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1 Introduction

In recent years, digitalisation, the availability of data and the possibilities for applying Artificial Intelligence
(Al) have become important business drivers for Europe’s key industrial sectors. In our understanding, Al is a
technical system that has the ability to mimic human intelligence, which is characterised by behaviours such as
sensing, learning, understanding, decision-making and acting. Due to the availability of powerful computing
hardware (graphics processing units (GPUs) and specialised architectures) and large amounts of data, Al solutions
—in particular Machine Learning (ML), and more specifically Deep Learning (DL) — have found numerous and
widespread applications over the last two decades (including image recognition, fault detection and automated
driving functions).

Low latency, privacy, connectivity limits and distributed applications have driven research in Edge Al, which en-
ables processing and decision-making near data sources—across cloud, edge, and Internet of Things (IoT) devices.
Itinvolves training Al models in the cloud and deploying them on edge devices.

In 2021, the EPoSS Edge Al Working Group published a white paper called “Al at the Edge” ™, which provided a
broad overview of Al methods and techniques, together with technological milestones to guide the research and
innovation over the next few years.

Following the publication of this white paper, two industry associations — EPoSS and INSIDE - joined forces. The
joint Edge Al Working Group is a community of hardware and software experts from industry and academia who
drive research and innovation for both national and EU-funded projects, and contribute their insights and views
concerning the future of Edge Al.

Recent breakthroughs, and in particular in the domain of Generative Al (GenAl), have driven a clear need to revise
our roadmap, including the technology milestones, to better understand and exploit the potential of GenAl in
the computing continuum, including at the edge. Figure 1.1 shows how to read our refined and updated Vision.

1 EPoSS Whitepaper, 2021, “Al at the Edge” (available at https://www.smart-systems-integration.org/publication-eposs-ai-white-paper)
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Figure 1.1: How to read this document

This white paper begins with an overview of the evolving cloud-edge-loT ecosystem, highlighting the critical
role of intelligent, resource-constrained devices that interact with both humans and machines. Chapter 3 then
explores the current Al trajectory, including the five levels of Artificial General Intelligence (AGI) coined by
OpenAl CEO Sam Altman'?. Chapter 4 dives into cutting-edge hardware architectures, while Chapter 5 examines
the many challenges, constraints and limitations around innovation in hardware for Edge Al development.
Chapter 6 introduces a novel spintronics-based solution that addresses the memory-wall issue with impressive
energy efficiency and performance. Chapter 7 outlines the timeline and expected outcomes of KDT and Chips
Joint Undertaking (Chips JU) projects in the coming years. Chapter 8 analyses global market trends, spotlighting
Europe’s Edge Al landscape and NVIDIA's growing dominance in the ecosystem. The final chapter outlines
important goals, objectives and recommendations for action that will boost the competitiveness of European
companies, building on the insights from earlier chapters.

2 https://www.forbes.com/sites/jodiecook/2024/07/16/openais-5-levels-of-super-ai-agi-to-outperform-human-capability
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2 Evolving Cloud-Edge-loT Infrastructures
and Data-driven Value Chains

The distributed and resource-constrained nature of edge computing presents challenges that are different from
those of centralised computing. Deploying Al on edge devices presents significant technical challenges, largely
due to heterogeneity: the variety of hardware platforms, real-time operating systems, sensor types, and Al work-
loads. While classic Al is now effectively deployed at the edge, GenAl has introduced new complexities. From
around 2014 with the rise of Generative Adversarial Networks (GANs) and popularised by breakthroughs such
as Transformers (2017), GenAl workloads have become increasingly hyperparameterised and resource-intensive.

n[3]

The findings collectedin the study “Transitioning from TinyML to Edge GenAl: AReview” underscore the growing
interest in deploying Edge GenAl models specifically on smartphones. For instance, imagine a hypothetical
service designed specifically for Gen Z smartphone users. It comes with a USD15 monthly subscription and sets a
strict performance expectation: latency must not exceed five seconds. Meeting these demands at scale presents
significant challenges, raising questions about the readiness of the current infrastructure for widespread

deployment.

A case study with Qwen2-VL-7B-Instruct™, a cutting-edge multimodal GenAl model, highlights some of the key
scalability challenges. With modest usage assumptions (60 tokens per user per query, and a five-second latency
limit), serving all 5.16 billion smartphone Gen Z users would demand:

= over 40,000 Al superclusters (each on the scale of NVIDIA's Cortex Al cluster™);
= powerinfrastructure of up to 130 MW per cluster; and
= unfeasible levels of acceleration and cost.

In short, large-scale GenAl deployment via the cloud is neither economically nor environmentally sustainable.
However, for training GenAl models, cloud computing remains essential; to preserve data privacy and sovereign-
ty, on premises Al training is also a promising direction to attain some relief from cloud dependency.

3 https.//www.mdpi.com/2504-2289/9/3/61

4 https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct

5 https://technologymagazine.com/ai-and-machine-learning/a-first-look-at-elon-musks-new-cortex-ai-supercluster
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Figure 2.1: Cloud-Edge-loT ecosystem view

In Edge Al systems, data is both collected and processed locally at or near the edge of the network, leveraging
loT devices and resource-constrained hardware. Cloud-edge-loT infrastructures must be highly adaptable to ac-
commodate varying data volumes, velocities, and privacy and security requirements. The data journey begins
with collection at tiny sensors, data generators, and micro-devices. Based on the application’s needs and privacy
considerations (see Table 7.1), the data is either processed locally or transferred to cloud or high-performance
computing infrastructures for advanced optimisation and decision-making tasks.
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The tech stack for data-driven Edge Al consists of several interconnected layers that enable the collection,

processing and application of data. The key building blocks include the following.

GenAl, foundation models, high-quality datasets and data spaces: Robust Al solutions at the edge rely
on foundation models and high-quality datasets. Common European Data Spaces offer the infrastructure
for federated, distributed sharing of these datasets.

Multi-agent systems: Powered by specialised Large Language Models (LLMs) and foundation models,
these agents deliver high performance while being optimised for resource-constrained devices such as
smartphones. They enable advanced Al functionalities directly at the edge.

Digital twins, metaverse/omniverse, and virtual worlds: Virtual models of physical objects use real-
time sensor data to simulate behaviour, monitor operations, and optimise performance throughout their
lifecycle.

Neural architecture search: To automatically devise Al models to solve edge problems by leveraging
on-premises Al energy-efficient computing and data availability.

Orchestration and brokering: Automating the configuration, management and coordination of systems,
applications, services and devices for streamlined operations.

Trust and security: Incorporating software and hardware components to ensure system reliability,
privacy, robustness, dependability, safety and performance, all critical for secure deployments.

Each of these building blocks represents an innovation area together with market opportunities, with emerging

or established players driving innovation to accelerate Edge Al adoption across the computing continuum.

The broader view aims to illustrate key interactions within the ecosystem, revealing the complexity of depen-

dencies together with associated challenges and potential risks. In this context, Chapter 4, “Overview of New

Hardware Architectures”, focuses on the specific challenges of running Edge Al on resource-constrained devices.

This ecosystem perspective offers a strategic lens to understand the research and innovation activities of KDT

and Chips JU projects described in Chapter 7, as well as market structure with the positioning of dominant players

explored in Chapter 8. The next chapter, “Al and Edge Al Development Trends: Setting the Scene”, explores the

evolution of Al, highlighting key trends that are shaping the future of innovation in Edge Al.
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3 Al and Edge Al Development Trends:
Setting the Scene

3.1 Most discussed Edge Al topics

Al is the most rapidly developing technologies that is affecting and challenging the current technological
landscape. According to Gartner'’s Hype Cycle™, Edge Al has surpassed its peak and is expected to reach a “plateau
of productivity” within two years. This signifies the technology’s transition through its initial phases of hype,
disillusionment and experimentation, ultimately becoming a standard and reliable tool for various use cases.
Furthermore, according to the Bank of America, the Taiwan Semiconductor Manufacturing Co (TSMC) will enable
USDA trillion in manufacturing digital chips by 2030 for its driving customers through Al computer servers,

including on-premises Al, Edge Al, tiny, and in particular agentic, including humanoid robots'™.

GenAl introduces new challenges, particularly in the context of distributed computing environments. The train-
ing of generative Al models, especially LLMs, requires a huge amount of computing power and energy, usually
provided by cloud computing infrastructures and efficient data centres. According to Yann LeCun, modern LLMs
are trained with 20 trillion tokens, with each token comprising three bytes —so that's 10" tokens! In the first four
years of life, the brain receives 16,000 hours of visual information at 2 MB/s. This is the equivalent amount of in-
formation needed to train an LLM. Therefore, for the foreseeable future, we will be very far (perhaps light years)
from achieving superhuman intelligence. It remains to be seen what computing and energy resources would be
required to power such a computer should humanity ever reach that point.

High-quality datasets are fundamental to the training of LLMs as they ensure the development of accurate,
unbiased and comprehensive representations of language. These datasets minimise the propagation of errors
and biases, thereby enhancing the model's generalisation capabilities and reliability. High-quality data collected
from loT devices and sensor networks reduces noise during training, enabling the model to focus on meaningful
patterns and relationships for more efficient learning. This ensures that LLMs achieve higher performance, par-
ticularly in real-world applications and complex tasks requiring contextual understanding and domain-specific
expertise. Consequently, the quality of training data directly influences the trustworthiness, applicability and
ethical deployment of LLMs across diverse fields. The objective of Common European Data Spaces™ is to estab-
lish uniform data infrastructures and governance frameworks that enable data pooling, access and sharing. This
allows them to provide high-quality resources for data-driven Al-based applications.

The recent breakthroughs in Al technologies have had a significant impact on the technology landscape. The
most intensively discussed areas in the Edge Al community are currently the following.

= LLMs enable machines to understand, reason and generate human-like language, revolutionising natural
language processing (NLP) tasks.

= GenAl enables the creation of novel content such as images, music and text using advanced transformer
and other architectures of generative models.

https.//www.gartner.com/en/articles/hype-cycle-for-artificial-intelligence

https.//www.investing.com/news/stock-market-news/how-tsmc-is-enabling-1-trillion-semiconductor-era-4010839

https.//www.forbes.com/sites/johnkoetsier/2025/04/30/humanoid-robot-mass-adoption-will-start-in-2028-says-bank-of-america

O ©® N O

https.//digital-strategy.ec.europa.eu/en/policies/data-spaces
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= Responsible Al focuses on building trustworthy Al systems that prioritise ethical decision-making, fairness
and societal well-being. It also promotes transparency and accountability in Al processes. However, it
requires the creation of governance frameworks and regulatory policies to align Al development with the
principles of responsibility, sustainability and social impact.

= Multi-agent Al systems (MAS) are composed of multiple intelligent agents that can sense, search
information, learn and act autonomously to achieve individual and collective goals. Powered by artificial
reasoning intelligence, these systems demonstrate building sequences of thought capabilities by being
flexible, scalable and robust to enable broader real-world impact across industries. MAS involve multiple
interacting agents — software or hardware entities — that work together to solve complex problems
beyond their individual capabilities.

= Embodied (physical) Al refers to the use of Al techniques to solve problems that involve direct interaction
with the physical world - for example, by observing the world through sensors or modifying the world
through actuators. It integrates Al into physical systems, and is increasingly combined with digital twins
and simulations to improve performance and decision-making in various industries.

= Al and quantum computing is still an emerging technology, promising breakthroughs in optimisation,
cryptography and drug discovery through quantum speed-ups. It has accelerated the need for hybrid Al-
quantum algorithms, and novel computational and open programming frameworks.

" According to Gartner,

One of the most debated emerging topics in Al is Artificial General Intelligence (AGI)
AGI refers to Al that can understand, learn and apply knowledge across a wide range of tasks and domains. Unlike
narrow Al, which is designed for specific applications, AGl possesses cognitive flexibility, adaptability and general

problem-solving skills.

AGlI is defined as Al capable of surpassing human performance in most tasks. Sam Altman, CEO of Open Al, a
leading force in GenAl and the creator of ChatGPT, uses a Five-tier scale to measure progress toward this goal™":
1. Conversational Al (current stage): At this level, Al interacts with users in natural language. Think of
customer service chatbots, Al writing assistants such as ChatGPT, or Al coaches. Most businesses today
leverage Al at this stage.

2. Reasoning Al (near future): This stage introduces “reasoners” — that is, Al capable of sequences of
thought to achieve problem-solving at a level comparable to a PhD graduate, but without external tools.

3. Autonomous Al: Here, Al “agents” can operate independently for days, managing tasks without human
intervention. Unlike today’s automations, which require monitoring, future Al at this level will be self-
correcting, ensuring reliability with minimal oversight. This may include autonomous learning, in addition
to inference.

4. Innovating Al: Known as “innovators”, these systems go beyond executing tasks — they improve them.
Instead of just following rules, they critically analyse processes to enhance efficiency and effectiveness.

5. Organisational Al (super Al): At the final stage, Al functions as an entire organisation, managing all
roles, optimising processes and collaborating autonomously — without human involvement.

He predicts we could reach level five within 10 years (see Figure 3.7), while others estimate it may take up to 50
years. The exact timeline remains uncertain, but the rapid pace of Al advancement is undeniable.

10  https:;//www.gartner.com/en/information-technology/qlossary/artificial-general-intelligence-agi

11 https.//www.forbes.com/sites/jodiecook/2024/07/16/openais-5-levels-of-super-ai-agi-to-outperform-human-capability
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Figure 3.1: Timeline with evolving Al trends with implications on Edge Al

GenAl will inevitably have a significant impact on Edge Al that will bring real-time decision-making capabilities
to resource-constrained devices such as loT, sensors and smartphones. It will push advances in hardware
optimisation and lightweight Al models to reshape edge computing paradigms. The rapid progress of GenAl
presents both challenges and opportunities for the semiconductor research and innovation community, requiring
a strategic reassessment of its R&l trajectory.

12
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4 Overview of New Hardware Architectures

Deep Neural Network (DNN) algorithms achieve high-performance results for various applications — autonomous
driving, smart health, smart home, smart agriculture, etc. However, these algorithms require high computational
power for both training and inference. The field of high-performance DNN accelerators has been largely domi-
nated by cloud platforms using NVIDIA GPUs and Google tensor processing units (TPUs), and the general trend
has been to provide flexibility and performance to serve a wide range of DNN applications — without much con-
cern for power consumption.

In contrast to monolithic accelerators such as the Google TPU, GPUs are modular by design and hence can scale
from high-performance computing systems to edge devices. For example, NVIDIA's Ampere microarchitecture
powers big A100 cores in data centres but also the Jetson Orin chips. A similar approach is taken by AMD, whose
Al Engine Architecture is a scalable array of vector processors that accelerates Al inference workloads in laptop
chips, 5G/6G communication infrastructure, as well as automotive edge devices. The advantage of edge and
smart sensor Al solutions is the use of inference accelerators for tiny neural network models that offer low
power, high throughput and low latency, opening up the possibility of moving processing closer to the sensor
and sensor nodes.

4.1 SNN-based accelerators

Spiking Neural Networks (SNNs) represent an evolution in artificial neural networks (ANNs) incorporating princi-
plesinspired by the workings of biological brains. Unlike ANNs, which process data continuously, SNNs utilise dis-
crete spikes as communication signals, introducing a time dimension to neuron activity. This makes SNNs uniguely
capable of modelling the temporal dynamics of biological neurons, such as the timing of spikes and inter-neuro-
nal dependencies. By leveraging event-driven computation, SNNs achieve remarkable energy efficiency, particu-
larly when implemented on specialised neuromorphic hardware like Intel’s Loihi or IBM's TrueNorth.

In neuromorphic hardware, their efficient computation paradigms make them ideal for low power environments
such as edge devices. In robotics and sensory processing, their capacity for real-time, temporal pattern recogni-
tion allows for advanced control systems and adaptive behaviours. There are also applications in fields such as
autonomous systems, speech recognition and time-series analysis, where SNNs can naturally encode and process
sequential data. Despite their flexibility, SNNs adoption presents challenges such as the complexity of training
methods, the need for specialised hardware, and difficulties in analysing their temporal activity patterns. Train-
ing SNNs is currently a complex task, often relying on approximations or hybrid approaches involving traditional
neural networks.

SNNs require specialised hardware to fully realise their potential, as general-purpose GPUs or CPUs struggle
with the sparse and temporal nature of spiking activity. SNN accelerators are designed to efficiently handle SNN
highly parallel event-driven operations and temporal characteristics, with the advantage of energy efficiency and
low-latency computation. Chips like Intel's Loihi and IBM’s TrueNorth have set benchmarks in this field by inte-
grating programmable synaptic plasticity, on-chip learning, and support for large-scale spiking networks. Intel’s
Loihi, for example, has pioneered the inclusion of biologically inspired learning rules such as Spike-Timing-De-
pendent Plasticity (STDP), enabling real-time adaptability. Similarly, IBM’s TrueNorth chip offers ultra-low power
operation with its million-neuron architecture, demonstrating the scalability of neuromorphic systems.

Recent advances in neuromorphic hardware have focused on enhancing scalability, enabling chips to support
larger and more complex networks — for example, with the adoption of improved memory architectures and

13
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3D-stacked designs to overcome data bandwidth limitations"™ ™. This also reduces latency and enables real-time

processing of high-dimensional data™ ",

Energy efficiency remains a primary objective as temporal sparsity and event-driven computation minimises
unnecessary activity, significantly reducing power consumption. For Edge Al devices and advanced memory
technologies such as memristors and resistive RAM (ReRAM), this represents a promising evolution. Moreover,
the combination of SNN accelerators with energy-harvesting technologies could contribute to the diffusion
of energy-autonomous systems, enabling devices to operate indefinitely in remote or resource-constrained
environments; in loT applications, this could represent a game changer.

Anothertrendis theintegration of SNNs with traditional deep learning frameworks, creating hybrid architectures
that combine the strengths of both paradigms: these systems can switch between continuous and event-driven
computation, optimising workloads dynamically for a wide range of applications.

The next generation of SNN accelerators will require novel materials, enhancing computational density, such as
phase-change memory and memristors, to replicate synaptic functions with greater efficiency. They will allow
the simulation of more biologically accurate neural dynamics, while a futuristic evolution could involve the fusion
of quantum computing with neuromorphic principles. Such quantum systems, with their inherent parallelism
and superposition capabilities, offer a new dimension for processing spike-based computations. Hybrid quan-
tum-SNN architectures could also accelerate learning and inference processes, tackling optimisation problems

that are currently infeasible with classical systems™™.

From an architectural perspective, SNN accelerators will include cognitive-level processing, enabling chips to
perform higher-order tasks such as reasoning, abstraction and multi-task learning. By incorporating hierarchical
and modular architectures, these systems will approximate the layered complexity of biological brains, making
them suitable for applications in AGI.

4.2 RISC-V based accelerators

RISC-V is very frequently adopted to develop Edge Al accelerators due to their flexibility and modularity, which
enables the customisation of processors tailored to specific workloads and applications. Current RISC-V based
accelerators are characterised by their ability to balance performance and power efficiency, crucial for Edge Al
systems operatingin resource-constrained environments—such as loT devices, autonomous sensors and robotics.
For example, the integration of domain-specific extensions within RISC-V cores, enabling accelerators to handle
specialised tasks such as matrix multiplications, Convolutional Neural Network (CNN) inference, and vectorised
computations, have been adopted to develop lightweight accelerators with a reduced energy consumption
profile while maintaining high throughput in machine-learning tasks. A practical implementation is the Parallel
Ultra-Low Power (PULP) platform, which builds on RISC-V cores to deliver ultra-low power Al solutions. The PULP
project emphasises fine-grained parallelism and energy-efficient computation, leveraging custom extensions for
machine-learning inference, to enable efficient data movement and computation, key factors for Edge Al tasks.

12 Indiveri, G., & Liu, S. C. (2015). “Memory and information processing in neuromorphic systems.”
Proceedings of the IEEE, 103(8), 1379-1397.

13 Prezioso, M. et al. (2015). “Training and operation of an integrated neuromorphic network based on metal-oxide memristors.”
Nature, 521(7550), 61-64.

14 BrainChip. (2022). “Akida: Neuromorphic Processing at the Edge.” [white paper].
15 Zidan, M. A. et al. (2018). “The future of electronics based on memristive systems.” Nature Electronics, 1(1), 22-29.

16  Markovic, D. et al. (2020). “Physics for neuromorphic computing.” Nature Reviews Physics, 2(9), 499-510.
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Adifferent approach adopts vectorised processing units in RISC-V accelerators to process multiple data elements
simultaneously, significantly improving the performance of neural network operations. For example, the RISC-V
Vector Extension (RVV) standard enables scalable vector processing, making it particularly effective for handling
the parallel nature of deep learning algorithms.

Emerging trends emphasise the use of heterogeneous architectures, where RISC-V cores work synergistically
with specialised Al processing units. This approach leverages the programmability of RISC-V for control tasks
while delegating computation-heavy operations to Al-specific accelerators. Such architectures enable a more
efficient division of computing load, reducing power consumption and latency in real-time applications.

The integration of approximate computing is another frontier for these accelerators, paving the way for acceler-
ators that strike a balance between accuracy and efficiency. By exploiting the inherent tolerance of Al algorithms
to computational noise, approximate computing techniques reduce precision levels in arithmetic operations,
thereby enhancing energy efficiency.

Moreover, the combination of RISC-V with emerging memory technologies like ReRAM and 3D-stacked memory
is anticipated to address the memory bottleneck in Al workloads. These technologies enable faster and more
energy-efficient data access, which is critical for large-scale Al models at the edge. Future accelerators may inte-
grate these memory systems with RISC-V cores to enhance the processing of data-intensive tasks.

Another promising direction involves the use of RISC-V in neuromorphic computing, where accelerators are
designed to emulate biological neural networks. By leveraging RISC-V's modularity, developers can implement
spiking neural network accelerators that combine biological plausibility with energy efficiency.

4.3 Photonic/optical-based accelerators

Photonics and optical technologies offer an alternative for high-speed and efficient Al tasks. These technologies
exploit the unique properties of light, such as high bandwidth, low latency and minimal energy dissipation, to
perform computations that would be prohibitively slow or power-intensive on conventional electronic hardware.
As Edge Al applications demand compact, energy-efficient systems capable of processing massive data streams
in real time, photonics-based accelerators are emerging as a promising solution.

At the forefront of this field are photonic neural networks, which leverage optical components such as wave-
guides, modulators and resonators to execute Al workloads, drastically reducing latency and power consumption.

These solutions use optical interference to compute in parallel and efficiently perform matrix multiplications'”

Silicon photonics, a mature and scalable technology, has enabled the integration of photonic accelerators into
edge devices, combining the precision of photonics with the practicality of CMOS-compatible manufacturing,
paving the way for cost-effective deployment. In this context, the use of optical memory, such as phase-change
memory, allows the storage of data in light-sensitive materials, enabling ultra-fast read/write cycles. Similarly,
optical interconnects eliminate bottlenecks associated with electronic data transfer, allowing accelerators to
handle high-throughput tasks with minimal latency. These innovations are particularly beneficial for edge scenar-

ios involving real-time data analytics and autonomous decision-making"™.

Photonics-based Al accelerators present several challenges, specifically in the integration of optical and electron-
iccomponents, as hybrid systems often encounterinefficiencies at the interface. Additionally, scaling photonic ar-
chitectures for more complex neural networks requires innovations in device miniaturisation and photonic circuit
design. Co-packaged photonic processors, where optical and electronic components share a common substrate,

17 Shen, Y, et al. (2017). “Deep learning with coherent nanophotonic circuits.” Nature Photonics, 11(7), 441-446.

18  Feldmann, J.,, et al. (2021). “Parallel convolutional processing using an integrated photonic tensor core.” Nature, 589(7840), 52-58.
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will eliminate inefficiencies at the interface, enabling seamless communication between light and electrons. This
will be crucial for scaling photonic accelerators to support large, complex neural networks in edge devices.

Beyond these advances, the future of photonic accelerators could lie in the use of novel materials such as two-di-
mensional semiconductors and meta-surfaces to enhance the efficiency and scalability of photonic devices.
These materials allow for more compact, denser (nanoscale precision) and energy-efficient photonic circuits,
making them suitable for deployment in constrained edge environments.

Quantum photonicsis another transformative direction, as it offers the potential to harness quantum phenome-
na such as superposition and entanglement for Al computations. Hybrid quantum-photonic systems could drasti-
cally enhance the parallelism and speed of Al accelerators, particularly for tasks such as optimisation and pattern
recognition.

Merging neuromorphicand photonics could also be an alternative, with photonicimplementations in SNNs, which
could enhance tasks requiring temporal data processing, such as speech recognition and autonomous navigation.

4.4 Biological processors

Biological processors and organoids represent an emerging frontier in Al hardware, where biological systems
are employed to perform computation. This paradigm diverges significantly from traditional silicon-based pro-
cessors, leveraging the unique properties of biological materials, such as adaptability, energy efficiency and
self-organisation. As Edge Al demands compact and efficient systems capable of real-time processing, biological
processors and organoids present promising solutions by mimicking the unparalleled computational capabilities
of biological brains.

Biological processors, particularly those based on synthetic biology and engineered genetic circuits, use living
cells or biomolecules to process inputs and generate outputs. For example, bacterial cells can be programmed
to function as logic gates, responding to chemical signals with specific outputs. These systems demonstrate the
potential for massive parallelism, as billions of cells can work simultaneously to process complex datasets. Recent
advances" highlight the development of molecular logic circuits capable of performing computations similar to
traditional electronics, but with far lower energy requirements.

Organoids, three-dimensional cellular structures that mimic the architecture and functionality of the brain, rep-
resents another alternative for neuromorphic computation. Brain organoids, in particular, are cultivated from
stem cells to replicate certain aspects of neural processing. Recent research has demonstrated the ability of
brain organoids to exhibit spontaneous electrical activity, resembling primitive forms of neural computation.
Organoids hold potential for Edge Al, as they can perform real-time processing in a biologically realistic manner,
with minimal energy consumption.

While these technologies are still in their infancy, their unique features make them well-suited for Edge Al appli-
cations, especially as biological processors excelin energy efficiency and adaptability, qualities critical for remote
or autonomous systems. Organoids, on the other hand, offer unparalleled parallelism and plasticity, enabling
them to learn and adapt to new data, much like biological brains.

Despite these advantages, challenges remain. Biological systems are inherently less predictable than electronic
circuits, and theirintegration with existing Al infrastructures poses significant hurdles. Additionally, scaling these
technologies for practical applications requires breakthroughsin bioengineering and computational frameworks.

One promising direction is the development of hybrid bioelectronic systems, where biological components
interface seamlessly with traditional electronics. Advances in bioelectronic interfaces are enabling real-time

19  Qian, L., et al. (2011). “Neural network computation with DNA strand displacement cascades.” Nature, 475(7356), 368-372.
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communication between living cells and silicon-based processors. This hybrid approach combines the adaptability
of biological systems with the precision and scalability of electronics, creating versatile platforms for Edge Al.

Organoids are also being adopted in neuromorphic computing, as by cultivating larger and more complex brain
organoids researchers aim to replicate higher-order cognitive functions such as decision-making and pattern
recognition. Recently, organoids have been trained to control robotic systems, suggesting their potential for
real-time autonomous operations at the edge.

Furthermore, synthetic biology is driving innovations in the programmability of biological processors. Techniques
such as CRISPR-Cas9 gene editing are enabling the design of genetic circuits with greater complexity and spec-
ificity. With this technology, engineered bacterial systems have been able to process spatial and temporal data,
opening new possibilities for applications in environmental monitoring and healthcare.

4.5 Chiplets

Chiplets are small integrated circuit (IC) die that are designed to work together within a single package to form
a complete system. Instead of having one large, monolithic die, a system is split into multiple smaller die, or chip-
lets, each performing specific functions. These chiplets are interconnected using advanced packaging technolo-
gies to create a cohesive system-on-a-chip (SoC).

This technology promises enhanced performance, flexibility, scalability and power efficiency, as well as improved
yield and cost-reduction due to the modularity it enables for SoCs. This modularity enables the reuse of chiplets
and their optimisation for specific tasks. All these advantages make chiplets an interesting approach for many
markets such as loT devices or automotive applications.

Naturally, they are also applicable to Edge Al aspects of these areas. However, before chiplets can find wide-
spread adoption, challenges such as standardisation, power distribution management and the linking of differ-
ent chiplets need to be resolved. To tackle these issues, groups such the ASRA group in Japan and the IMEC
automotive chiplet program in Europe were formed.

4.6 In-memory computing (memristive technologies)

In-memory computing integrates computation and data storage within the same physical components, signifi-
cantly reducing the need to transfer data between separate processors and memory units. Memristive technol-
ogies —including spin-orbit torque MRAM (SOT-MRAM), phase-change RAM (PCRAM) and oxide-based resistive
RAM (OxRAM) — enable memory cells to perform logic or analogue computations directly. By substantially re-
ducing data movement, in-memory computing greatly enhances the speed and energy efficiency of Al inference.
Traditional deep learning hardware often spends more time and energy moving data (weights and activations)
between off-chip dynamic random-access memory (DRAM), on-chip static random-access memory (SRAM), and

computational units than executing arithmetic operations™”.

Emerging technologies such as SOT-MRAM, PCRAM and OxRAM integrate memory and processing functions,
significantly reducing data transfer latency. By minimising bottlenecks between the CPU and memory, these
architectures boost inference speed —an essential advantage for real-time Al applications. Their low-latency per-
formance makes them especially well-suited for Edge Al, where fast on-device processing is critical.

20  https://semiengineering.com/increasing-ai-energy-efficiency-with-compute-in-memory
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4.7 ASICs, SoCs and microcontrollers

Application-specific integrated circuits (ASICs) and Al-centric SoCs are custom-engineered to deliver highly
efficient deep learning inference. Unlike general-purpose CPUs or GPUs, which are designed for a wide range
of tasks, these chips incorporate specialised circuits such as tensor engines and neural processing units,
components that are finely tuned for the types of matrix operations and neural network computations that
underpin modern Al models.

The result of this specialisation is a significant boost in both performance and energy efficiency. ASICs and SoCs
can achieve extremely high throughput — often measured in trillions of operations per second (TOPS) — while
maintaining a low power footprint. For instance, a neural processing unit embedded in a smartphone can per-
form several TOPS of inference while consuming only a few hundred milliwatts of power, a level of efficiency
that conventional CPUs or GPUs cannot sustain. However, this high level of optimisation comes with a trade-off:
these chips are typically limited in flexibility, and are best suited for specific tasks rather than general-purpose
computing.

In many Al systems, particularly those operating at the edge, microcontrollers (MCUs) are integrated alongside
ASICs or within SoCs to handle tasks that require low power and real-time responsiveness. While MCUs lack the
processing muscle for intensive inference, they are essential for coordinating sensor input, triggering inference
operations, and managing communication between different components of the system. In certain ultra-low
power scenarios, such as TinyML applications, even simple neural networks can be deployed directly on microcon-
trollers, enabling basic Al functionality directly on the device without relying on cloud resources.

As Al continues to expand into embedded and autonomous systems, ASICs and SoCs are becoming increasingly
vital. Their ability to deliver high-performance, low-latency inference makes them well-suited for demanding
applications such as voice recognition, computer vision, autonomous vehicles and industrial automation.

4.8 FPGAs

Field programmable gate arrays (FPGAs) provide a unique and powerful platform for accelerating Al models by
offering reconfigurable hardware fabrics that enable massive parallelism. At their core, FPGAs consist of an array
of configurable logic blocks interconnected in a way that allows designers to create custom datapaths and com-
putational units. This flexibility is particularly valuable for Al workloads, where operations such as multiply-accu-
mulates, adders and control logic can be spatially mapped and optimised to match the structure of a given neural
network.

Unlike ASICs, which are fixed-function chips tailored for specific tasks, FPGAs can be reprogrammed to support
new or evolving model architectures. This reconfigurability makes them ideal for Al applications that require fre-
quent updates or experimentation, such as in Edge Al deployments or during the prototyping phase of develop-
ment. Engineers can fine-tune hardware characteristics —including dataflows, memory hierarchies and bit-widths
—to match the demands of each model, thereby enhancing both performance and efficiency.

One of the key strengths of FPGAs lies in their ability to adapt to a wide range of Al models while maintaining
moderate power consumption. Their architecture supports extremely low-precision computing, with some
designs utilising quantisation down to just one or two bits. This not only accelerates computation but also
drastically reduces power usage —an essential advantage for power-sensitive environments.

As the landscape of Al continues to evolve rapidly, FPGAs offer the agility and customisation required to stay
aligned with the latest advances, making them a compelling choice for developers building cutting-edge
adaptive Al solutions.
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4.9 ECHO gateway for Al processing

A standardised, automated interface framework enabling seamless chip-to-cloud (such as machine-to-machine)
communication is essential. Automated access from Edge CHip to clOud (ECHO) should enable fast Al processing
on the cloud without any access to external world to offer trustworthiness, and ensure privacy and secured Al
processing.

Bridging the gap between edge devices and cloud infrastructure at the hardware level minimises the fragmenta-
tion of operating systems and communication protocols, as highlighted by a CEUR-WS paper™". To maintain a se-
cure data flow from edge to cloud, direct hardware-level access within cloud platforms —such as AWS, IONOS and
Azure—must be enabled via secure application programming interfaces (APIs), independent of application-specif-
ic knowledge. For futuristic multi-core edge processors, message queuing telemetry transport (MQTT) and con-
strained application protocol (CoAP) are not efficient when there is a hardware-based APl communication as then
channels are scalable, and it enables a priority-based channel for uplink and downlink (also easy to port on 5/6G).

To mitigate potential security threats, the system must implement end-to-end encryption, strong authentication
mechanisms, zero trust, a time stamp, and enforce consistent security policies across the entire datapath — from
edge devices to cloud infrastructure. This architecture ensures that no intermediate software layer can access or
tamper with the data during transfer, enabling secure Al training and inference in the cloud.

To address the different application needs, the cloud can offer improved scalability and hardware-level flexibility

to accommodate a wide range of application requirements, facilitating seamless ECHO integration™.

A key benefit of this hardware-centric gateway approach is reduced latency and faster Al model training. It also
supportsin-memory computing and facilitates the integration of deep neural networks directly within data pipe-

lines, enabling Al processing closer to the source without overloading higher-tier Al accelerators™.

Ultimately, this architecture reduces dependency on software configuration, minimises manual handovers, and
simplifies secure cloud access — paving the way for highly efficient and secure Al-driven systems.

21  Stanko, A. et al. (2024). "Artificial intelligence of things (AloT): Integration challenges, and security issues”
(https.//ceur-ws.org/Vol-3842/paper6.pdf).

22  See PwC, (2024) “2024 cloud and Al business survey.”
(https.//www.pwc.com/us/en/tech-effect/cloud/cloud-ai-business-survey.html).

23 Jhang et al. (2021) "Challenges and trends of SRAM-based computing-in-memory for Al edge devices.”
IEEE Transactions on Circuits and Systems. 68(5). 1773-1786
(https.//ieeexplore.ieee.org/document/9382915).
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4.10 Conclusion

There is much evidence of a shifting paradigm toward Edge Al. Traditional DNNs dominate high-performance
cloud-based applications but face scalability issues at the edge due to high power and computing demands.
There is a growing need for energy-efficient, real-time Al solutions closer to data sources, which is fuelling inno-
vation in edge-focused hardware.

Spiking Neural

Networks (SNNs) Edge Chip-to-cloud
Bio-inspired . : Optical
Electronics Spintronics computing

ASICs and In-memory .
Al-centric SoCs computing Quantum Photonics
Chiplets

now in 3-5years in 5-10 years timeline

Figure 4.1: Timeline for the emerging hardware architectures

SNNs, inspired by biological neurons, offer ultra-low-power and real-time processing, particularly suitable for
robotics, time-series data and sensory applications. Neuromorphic chips such as Intel’s Loihi and IBM’s TrueNorth
showcase the potential of on-chip learning and energy efficiency. However, challenges remain in training com-
plexity and hardware specialisation.

RISC-V's modularity makes it ideal for customising Al accelerators for edge devices. Platforms like PULP and vec-
tor extensions (RVV) enable efficient processing of ML workloads. The integration of heterogeneous computing
and approximate computing further enhances power efficiency and performance in constrained environments.

Optical computing offers significant advantages in speed, parallelism and energy efficiency. Photonic neural net-
works and silicon photonics reduce latency and power usage, making them well-suited for high-throughput edge
applications. Future advances will rely on hybrid photonic—electronic systems, new materials, and potentially
quantum photonics for extreme acceleration.

Chiplets enable flexible, scalable, and cost-effective Al hardware by modularising specific functions within a chip
package. Their reuse and task-specific optimisation make them ideal for Edge Al in domains including loT and au-
tomotive. Widespread adoption depends on overcoming standardisation and integration challenges.
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Although they are still experimental, biological computing systems (eg, brain organoids and synthetic bio-pro-
cessors) show promise for ultra-energy-efficient, adaptive Al at the edge. Hybrid bioelectronic interfaces are also
emerging, with the aim of combining biological adaptability with electronic control for the next-generation of

intelligent systems”

In-memory computing technologies (eg, SOT-MRAM, PCRAM, OxRAM) drastically reduce data movement, en-
hancing speed and power efficiency. This is particularly important for edge devices that require fast, local Al
inference. These architectures address memory bottlenecks and support real-time Al processing.

ASICs and Al-centric SoCs are highly specialised for deep learning inference, offering maximum performance and
energy efficiency for specific tasks. In contrast, FPGAs provide a reconfigurable platform that trades some effi-
ciency for flexibility, making them ideal for evolving or frequently changing Al models. The choice between them
reflects a trade-off between performance optimisation and hardware adaptability.

The ECHO architecture provides a highly efficient and secure foundation for next-generation Al systems. It sim-
plifies cloud access, minimises manual configuration, and delivers the flexibility and scalability needed to accom-
modate diverse application requirements — ultimately setting a new standard for secure, hardware-level chip-to-
cloud integration.

24 Boufidis, D. et al. (2025) “Bio-inspired electronics: Soft, biohybrid, and ‘living’ neural interfaces.”
Nature Communications. 16 (https.//www.nature.com/articles/s41467-025-57016-0).
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5

Challenges, Constraints and Limitations Drive
Innovation in Hardware Solutions for Edge Al

As Edge Al continues to evolve, it brings with it a unique set of challenges, constraints and limitations that de-

mand a fresh wave of innovation in hardware design. This chapter explores the pressing technical, environmental,

computational and specific Al model-related hurdles that require innovation in Edge Al hardware solutions.

541

Edge device constraints

Deploying Al algorithms on edge devices presents several constraints that must be carefully managed to ensure

optimal performance.

Processing powerandspeed: Al algorithms require substantial computational resources to execute within
acceptable timeframes. Edge devices often have limited processing capabilities, making it challenging to
run complex models efficiently. Specialised hardware accelerators, such as neural processing units (NPUs),
can enhance performance by offloading Al-specific tasks from general-purpose CPUs.

Available memory: Sufficient onboard memory is essential for temporarily storing and retrieving data
during Al model execution. The size and speed of this memory directly impacts processing speed, energy
consumption and overall efficiency. Techniques such as model quantisation and pruning can reduce
memory requirements, enabling the deployment of Al models on devices with constrained resources.
Al models must be stored on the device, and storage limitations can restrict the complexity and size of
deployable models. Efficient model compression methods are crucial to fit models within the storage
constraints of edge devices without significantly compromising performance.

Energyconsumption:ProcessinganddatamovementinAltasksconsume power,andlargermodelstypically
lead to higher energy consumption, reducing device autonomy. Energy-efficient model architectures and
hardware accelerators can mitigate this issue by optimising power usage during inference.

Processing support: Traditional processors (CPUs or microcontrollers) often complement Al accelerators
in edge devices, handling tasks that are not well-suited for specialised hardware. However, this
collaboration can further reduce device autonomy due to increased energy consumption. Balancing the
workload between general-purpose and specialised processors is essential to maintain efficiency.

Connectivity: Edge nodes are typically connected to external resources, typically to send sensory
data or receive commands, and to interact with cloud resources. However, they suffer from unreliable
connectivity, and can also be unable to deliver the data rates and latency required by the application.
Introducing connectivity management and local Al capabilities (in particular with distributed or split Al
approaches) significantly increases the robustness and performance of the deployed application.

Hardware deterioration: Edge devices are exposed to a much wider range of sources of hardware
deterioration (including different kinds of weather) than processing hardware in cloud servers.
The deterioration of the underlying hardware leads to a reduction in the performance of Al models
deployed on edge devices. Hence, it is essential that Edge Al models are robust and flexible, and that
edge application systemsinclude mechanisms for performance monitoring and updates to deal with the
deterioration, which will increase the lifetime and sustainability of Al-based edge products.

Security and safety: Edge devices are often much easier to access than a cloud server. This makes them
vulnerable to wider range of attacks, especially physical ones. Hence, Al models that are used for safety-
critical processes need to be deployed on certified edge hardware with security and safety components
and mechanisms.
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= Device resource sharing: The adoption of multiple Al models of the same device generally involves
the concurrent use of its limited recourses, reducing their availability and negatively impacting on
performances.

Addressing these constraints requires a holistic approach, combining hardware advancements with software
optimisation techniques to enable effective Al deployment on edge devices.

5.2 Edge model and application constraints

Software—hardware co-design is essential for Edge Al, tightly integrating hardware capabilities with software
demands to optimise efficiency, performance and power usage — critical aspects for edge applications. Edge
devices typically face stringent power constraints; co-design ensures software algorithms leverage hardware
strengths to significantly reduce energy consumption. By tailoring hardware acceleration specifically to Al
models, co-design enables faster, responsive and real-time processing.

Aligning software requirements with hardware execution minimises data movement and latency, which is crucial
for real-time performance. Additionally, this approach supports adaptable and future-proof hardware architec-
tures that can evolve alongside emerging software techniques and increasing Al model complexity. Ultimately,
software—hardware co-design effectively bridges algorithm innovation and hardware functionality, creating effi-
cient, powerful and responsive Edge Al solutions.

Optimising Al models and applications for edge devices involves addressing several key constraints.

= Modelsize: Large models demand more computational power and memory, which can lead to slower
operations on resource-limited edge devices. Techniques such as model pruning and quantisation can
reduce model size, enhancing performance without significantly compromising accuracy.

= Model accuracy and precision: The level of precision used in data representation affects hardware
resource requirements, and consequently the performance and accuracy of Al models. Balancing
precision and resource utilisation is crucial for efficient edge deployment.

= Model architecture: The design and parameter interconnections within a neural network influence
computational efficiency, memory usage and processing speed. Selecting architectures optimised for
edge environments is essential for effective deployment.

= Model training and inference: In the context of Edge Al, it isimportant to differentiate between training
and inference (deployment). Typically, Al models undergo resource-intensive training processes in cloud
environments, where substantial computational resources are available. Once trained, these optimised
models are deployed to edge devices, where inference occurs. This separation ensures computationally
demandingtraining tasks do not burdenresource-constrained edge hardware, while still enabling efficient,
real-time, on-device Al. Training models directly on low-power devices is still a cutting-edge area, one that
comes with a host of challenges — both technical and practical; however, with breakthroughs in software
and data-centric strategies, federated learning and hardware, it is becoming more feasible.

= Application speed requirements: Edge devices may struggle to meet the speed demands of applications
due toresource constraints, affecting their ability to ingest data and performinference in a timely manner.
Optimising both hardware and software is necessary to achieve the required performance levels.
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Data volume versus resource availability: Handling large datasets or high-resolution inputs can quickly
exceed the available resources of edge devices, hindering application performance. Implementing data
compression and efficient data-handling strategies can mitigate this issue. However, edge devices may
have limited or intermittent access to labelled data (essential for supervised training), and this has led to
new strategies such as federated learning, self-supervised learning, and active learning techniques.

Raw data preprocessing: Preprocessing raw data before feeding it into Al models often requires
substantial computing and memory resources. Efficient preprocessing pipelines are necessary to manage
resource consumption effectively.

Robustness: Unforeseen events and hardware deterioration can arise in all application contexts. At the
same time, retraining and updates are more difficult at the edge due to the limited resources. Hence, Edge
Al models need to be made robust to deal with these issues to a degree.

Addressing these constraints requires a comprehensive approach, one that combines model optimisation

techniques with efficient data handling and hardware considerations to ensure effective Al deployment on
edge devices.

5.3

Environmental, operating and financial constraints

Deploying edge devices involves navigating a range of environmental, operational and financial constraints.

Device form Factor: Edge devices must adhere to specific size and weight limitations, which can be
challenging due to the need for components such as cooling systems, interfaces and batteries. Balancing
these requirements is essential to meet form factor constraints.

Environmental considerations: Edge devices often operate in harsh conditions, such as extreme
temperatures, humidity, dust, or radiation. Ensuring high reliability in these environments may necessitate
specialised hardware, which can be less performant and more costly.

Safety and security: In safety-critical applications, hardware redundancy is typically necessary to enhance
reliability, althoughit canincrease costs and introduce additional design constraints. Additionally, securing
data communication is essential when deploying Edge Al applications in public or remote environments to
protect against potential vulnerabilities and ensure privacy.

Accessibility: Accessing edge devices can be difficult, especially in remote or hard-to-reach locations,
making maintenance and updates challenging and expensive.

Deployment and commissioning: The process of deploying and commissioning edge devices is often
complex and costly, particularly when dealing with large-scale or geographically dispersed installations.

Maintenance and evolution: The ongoing operation, management, updates, maintenance, replacement
and eventual decommissioning of edge devices represents a significant cost over the device lifecycle.
Ensuring that Al model updates have been correctly implemented and are working as intended is critical.
Techniques such as runtime behaviour analysis and provenance tracking can be used to verify model
integrity.

Standards for protocols and interfaces: Due to the diverse nature of edge devices — ranging from small
loT sensors to complex autonomous systems — establishing standards, protocols and interfaces becomes
crucial. Standards and protocols ensure interoperability between various hardware and software
components, facilitating seamless integration, scalability and communication across different platforms.
Well-defined interfaces enable efficient data exchange, software reuse and simplified development,
ultimately reducing complexity and cost.
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Addressing these constraints requires careful planning and consideration of trade-offs to ensure that edge
deployments are both effective and sustainable.

5.4 Safety, security and privacy technologies

Edge Al refers to deploying Al algorithms directly at the point of data processing and decision-making, such as
an |oT device or an integrated module in a modern car (eg, a pedestrian detector for collision warnings). While
research has focused on making Al training more robust, reliable and secure by reducing reliance on third-party
cloud services, Edge Al introduces unique challenges.

For instance, in the case of a connected car fleet, model retraining may be necessary to enhance performance.
Since on-device training is typically impractical, collected data must be transferred to a powerful server. Once
retrained, updated models must then be deployed back to edge devices. This shift from traditional Al pipelines
raises key safety and security concerns, including the following.

= Functional safety: How can we ensure that |oT devices operate correctly, addressing hardware issues (eg,
bit flips, loose cables) and maintaining software integrity?

= Physical intrusion: How can we prevent tampering that could compromise device stability or expose it to
external threats?

= Security: How canwe protect on-device data—whethergathered, processed or stored—from unauthorised
access?

= Transmission integrity: How can we guarantee the security and integrity of training data sent to servers
and new models deployed back to devices?

Addressing these concerns is crucial for building secure, reliable, and efficient Edge Al systems that can operate
independently while ensuring data privacy and system stability.

5.5 Technology challenges For computation

Advances in computing performance have historically relied on transistor miniaturisation and architectural im-
provements. However, as we approach the physical limits of transistor scaling, alternative strategies are essential
to overcome emerging challenges such as the memory wall and energy inefficiency.

The continuous shrinking of transistors faces significant obstacles.

= Thermodynamic constraints: As transistors approach atomic scales, quantum effects like electron
tunnelling become prominent, hindering further miniaturisation.

= Manufacturing challenges: Photolithography faces challenges at nanometre scales, making advanced
chip production more complex. Another key issue is identifying the optimal combination of technologies
for the diverse functions in an Edge Al component. In this context, chiplets offer a promising solution.

25



ARTIFICIAL INTELLIGENCE AT THE EDGE A joint European Roadmap for Edge Al

To address these limitations, several approaches are under exploration.

= 3D integration and heterogeneous architectures: Stacking chips vertically and integrating diverse
components can enhance performance and mitigate space constraints.

= Specialised hardware: Developing ASICs tailored for particular tasks can offer efficiency gains over
general-purpose processors.

= Alternative technologies: Exploring new materials and devices, such as memristors and integrated
photonics, holds promise for surpassing current transistor limitations.

5.6 Memory wall challenge

A significant portion of processing time is consumed by data transfer between memory and processors, leading
to inefficiencies.

= Data transfer bottlenecks: In large-scale Al models, substantial time is spent moving data, which doesn’t
scale efficiently with increased processing power. Ensuring that Al models run efficiently across diverse
hardware environment — from loT devices to smartphones — adds complexity. Variations in hardware

capabilities necessitate tailored optimisation strategies to maintain performance .

To overcome the memory wall, strategies such as implementing memory hierarchies are key. For this, the follow-
ing approaches may be useful.

= Compute-in-memory (CIM) architectures: Integrating processing capabilities within memory units
reduces data movement, enhancing speed and energy efficiency.

= 3D memory technologies: Expanding memory bandwidth through vertical stacking can alleviate data
transfer limitations.

5.7 Energy efficiency

Energy efficiency has become a critical concernin the computing industry due to the significant environmental
and economic challenges posed by the escalating power consumption of data centres and high-performance
computing systems. The growing energy demands of advanced computing systems pose sustainability challenges.

= High power consumption: Traditional architectures consume substantial energy, leading to increased
operational costs and environmental impact.

= Specialised low-power hardware: Designing chips optimised for specific tasks can significantly reduce
energy consumption.

= Algorithmic optimisation: Developing more efficient algorithms can decrease computational load and
associated energy use.

25 https//www.wevolver.com/article/challenges-and-opportunities-in-edge-based-generative-ai
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5.8 Modularity and interoperability of the technology stack

In the rapidly evolving computing landscape, hyperscalers — large-scale cloud service providers — recognise that
mere hardware advancements are insufficient to meet escalating application demands. Their distinctive advan-
tage lies in a holistic approach known as “verticalisation”, emphasising comprehensive control over the entire
technology stack. This strategy integrates hardware design, alternative materials and optimised algorithms to
sustain progress in computing performance. By managing both hardware and software components, hyperscal-
ers can tailor solutions that enhance efficiency, scalability and innovation, setting them apart in the competitive

cloud services market™.

This strategy is rooted in “system thinking”, and involves the following.

= |terative co-design and co-optimisation: By continuously refining and aligning system requirements
down to the hardware level, and spanning all layers of the technology stack, hyperscalers ensure that
each component is optimised in harmony with the others. This process, often referred to as system
technology co-optimisation (STCO), enables architectural and technology trade-offs early in the system
design process to achieve high-performance, cost-effective solutions in a reduced timeframe.

= Multidisciplinary collaboration: Leveraging expertise across diverse fields allows for innovative
solutions that address complex challenges, ensuring that the final product meets client needs effectively.
This holistic co-design approach tends to break the barrier across the vertical layers (devices, circuits,
architecture and systems, algorithms, and applications), and therefore achieve global optimisation.

By embracing this vertically integrated methodology, hyperscalers can deliver cloud solutions that not only meet
but often exceed client expectations, minimising the effort required to build on hardware and ensuring seamless,
efficient performance.

5.9 Software and data challenges in on-device training

Training machine-learning models directly on edge devices introduces a range of complex challenges that go
far beyond hardware limitations. From a software and data perspective, the core difficulties stem from adapt-
ing conventional training paradigms — originally designed for data centre-scale environments — to extremely re-
source-constrained, heterogeneous, and often dynamic, edge environments.

One of the most fundamental training paradigms is backpropagation, which requires the storage of intermedi-
ate activations across all layers of a network. On standard servers or GPUs, this is not a problem — but on edge
devices itis a major constraint. Efficient gradient computation thus becomes a bottleneck. Developers must rely
on strategies such as reduced precision gradients to squeeze training processes into these limited environments;
however, these workarounds introduce trade-offs in terms of convergence speed and numerical stability.

Another critical factor is the batch size. Modern training workflows depend on mini-batch gradient descent to
stabilise updates and efficiently utilise vectorised operations. On the edge, the available memory usually allows
for processing only one or a few samples at a time. This severely increases the noise in gradient estimates, slows
convergence, and makes it harder for the model to generalise. As a result, optimisers that adapt quickly to sparse
or noisy gradients are more suitable, although they bring their own overhead that must be managed carefully
on-device.

26  https//www.nextplatform.com/2020/02/03/vertical-integration-is-eating-the-datacenter-part-two
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Another challenge is often a lack of labelled data. Edge devices typically collect vast streams of raw data —
sensor readings, images, audio snippets — but without associated ground-truth labels. This makes traditional
supervised learning infeasible in most real-world edge scenarios. Developers must lean on self-supervised or
semi-supervised learning techniques, such as contrastive learning or pseudo-labelling, methods that reduce
dependence on annotated data but require careful calibration to avoid reinforcing model bias or overfitting
to incorrect signals.

Moreover, training on edge devices is almost always continual in nature. Rather than training once on a fixed
dataset, the model is exposed to a constantly evolving data stream. This leads to the well-known problem of
catastrophic forgetting, where learning new data causes the model to lose previously acquired knowledge.
Resolving this requires implementing continual learning techniques, memory replay buffers, or regularisa-
tion-based strategies — all of which need to be implemented in lightweight and memory-efficient ways that
are compatible with the device's constraints.

The challenge is compounded by data drift. The input distribution seen by an edge device often changes over
time —i.e., users behave differently and/or hardware may degrade. Unlike in the cloud, there is no centralised
retraining pipeline or data validation loop. Models must be able to adapt locally, ideally using online learning
or meta-learning techniques that support fast adaptation. Nevertheless, without access to large-scale met-
rics or test sets, it is difficult to even know whether the model is still performing well.

Finally, there is the issue of infrastructure. The ML software stack at the edge is fragmented and immature
when it comes to training. Most available tools are designed strictly for inference, not training. Often, teams
must write their own training loops from scratch, manually handling forward and backward passes, memory
allocation, and serialisation.

Altogether, these challenges make on-device training a highly specialised area of research and development.
While inference on the edge has become increasingly practical, training still requires a nuanced blend of
algorithmic adaptation, software engineering and clever approximation techniques. However, as interest
in Edge Al grows the need to solve these training bottlenecks becomes more urgent (and more rewarding).

5.10 Engineering tools For designing Edge Al-driven products

When developing Al-driven products, it is important to consider the entire technology stack to ensure seam-
less integration, optimal performance and adaptability. This comprehensive approach encompasses several
layers, from data ingestion and processing to model training, deployment and userinterfaces. By addressing
each component, engineers can harmonise the interactions between hardware and software, resulting in
efficient resource utilisation and improved system performance. In addition, a holistic perspective enables
the implementation of robust security measures at every level, protecting against vulnerabilities and en-
suring data integrity. This strategy not only streamlines the development process, but also facilitates the
creation of Al-driven products that are robust, efficient, secure, and able to meet the complex demands of
today’s applications.

= Integrating Al into smart system products: Developing Al-driven smart systems is an interdisciplinary
challenge, requiring seamless collaboration between data scientists, system architects, verification
engineers, and specialists in mechanics, electronics, semiconductors and software. Implementation
decisions are shaped by key product requirements such as power consumption, size, thermal
dissipation, and real-time performance, as well as economic factors like production cost and time-to-
market.
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5.10.1 CHALLENGES IN AI-DRIVEN SMART PRODUCT DEVELOPMENT

Al-based products offer a wide range of implementation technologies, making architecture decisions criti-
cal. Poor analysis can lead to excessive costs, power consumption, or hardware resource constraints. Tradi-
tional domain-specific design methodologies struggle to handle this multi-dimensional design space, often
leading to miscommunication between teams using different terminologies, delays, or even product failure.

A holistic, scalable methodology and tooling is needed to manage development - from simple loT devices
to complex system-of-subsystems (eg, vehicles). Key here is hierarchical design phases and tooling. For
this, Al-driven smart product development follows five interconnected design phases:

= requirements capture and management;

= Al algorithm development and training;

= architecture exploration;

= implementation architecture validation; and
= domain-specificimplementation paths.

Each phase propagates requirements and feedback to ensure continuous refinement. We will now examine
each of these in turn.

1. Requirements capture and management
This phase involves well-established requirements management tools that integrate with subsequent de-
sign workflows.

2. Al algorithm development and training
Neural network development relies on tools such as TensorFlow, PyTorch, Keras, and Apache MXNet, most-
ly open-source and Python-based. The tooling must supportimporting models from multiple Al frameworks.

3. Architecture exploration
At thisstage, potentialimplementation technologies are evaluated. Al models are mapped onto processing
elements and accelerators in abstract performance simulations to analyse key metrics:

= processing time (latency);
= interconnect utilisation;
= storage usage; and

= power consumption.

The goal is to narrow down viable architectures for detailed analysis. To accommodate diverse hardware
platforms, architecture exploration must support hierarchical virtual modelling, targeting:

= off-the-shelf electronic control units (ECUs);

= custom ECUs with standard processors/SoCs;

= pre-built SoCs with internal accelerators;

= custom SoCs or 3D ICs; and

= hybrid solutions combining off-the-shelf and configurable components.

A parametric simulation model enables rapid architecture adjustments and design sweeps. If the analysis
shows feasibility constraints, either the algorithms or requirements must be adjusted.

4. Validation of implementation architecture

With the solution space reduced, the next step is Functional and performance validation using virtual
platform technology - a bit-accurate, timing-approximate simulation that runs real software on modelled
processors. This offers:
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= more precise timing, power and interconnect/memory utilisation analysis than prior simulation models;
= confidence that the architecture meets constraints; and
= integration with a full digital twin for real-world validation.

5. Domain-specificimplementation paths
Once the architecture is finalised, it is handed off to domain-specific development teams using specialised design
tools:

= electronic design automation (EDA) tools for printed circuit board
(PCB), IC, and three-dimensional IC (3D IC) design;
= vendor-specific tools for FPGA, NPU and custom SoC implementation; and
= conventional software development tools for firmware and application software.

6. Access to tools
To support small and mid-sized companies, development tools must be:

= affordable with low entry barriers;

= easily accessible, such as cloud-based solutions with pre-installed
toolchains and secure remote access; and

= supported professionally, as open-source tools require expertise
to handle the complexity of Al system design

To summarise, Al-driven smart product development demands an integrated, multi-phase approach with scalable
methodologies and toolchains. By addressing implementation challenges early, companies can accelerate time-
to-market, optimise performance, and control costs.

5.11 Conclusion: Challenges driving innovation in Edge Al hardware

Edge Al faces significant constraints in processing power, memory, energy and connectivity, demanding spe-
cialised, efficient hardware and optimised Al models. Software—hardware co-design is essential to align perfor-
mance, power and latency requirements. Harsh operating environments, limited access, and the need for robust,
secure systems further complicate deployment.

Energy efficiency is a critical driver, pushing innovation in low-power architectures, in-memory computing, and
neuromorphic hardware. As traditional transistor scaling nears its limits, new solutions such as chiplets, 3D inte-
gration, and emerging technologies (eg, photonics, memristors, biological processors) are gaining traction. Stan-
dardisation, modularity, and advanced design tools are crucial to manage complexity, ensure interoperability and
accelerate development. Finally, lifecycle sustainability — through efficient updates, monitoring and maintenance
—is key to enabling scalable, long-term Edge Al deployment.
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6 MultiSpin.Al: An Opportunity for Europe to Lead
the Field of Edge Al Computation Hardware

The increasing demand for real-time, energy-efficient Al processing has driven the development of dedicated
hardware architectures for Edge Al applications. Traditional digital computing hardware based on von Neu-
mann architectures cannot keep up with these Al requirements, leading to the development of novel computing
schemes. In this chapter, we explore the evolution of Edge Al hardware, focusing on spintronic-based analogue
Al platforms such as MultiSpin.AI””, which could play an important role in the development of novel Edge Al
hardware in Europe.

6.1 Requirements on Edge Al hardware driving innovation
in spintronics

The transition from cloud-based Al processing to Edge Al has been significantly accelerated by emerging indus-
tries such as autonomous vehicles, which necessitate real-time processing, minimal latency, and reduced energy
consumption. This industry-specific shift has led to increased demand for specialised Al hardware solutions char-
acterised by low power usage and high computational efficiency.

6.2 Spintronic Al platforms

Spintronic technologies exploit the intrinsic quantum mechanical property of electron spin for information stor-
age and computation. These technologies have emerged as promising foundations for both general-purpose
neuromorphic systems and specialised analogue in-memory coprocessors. Spintronic-based systems offer signif-
icant advantages, including ultra-low power consumption, improved scalability, and resilience to miniaturisation
effects, making them ideally suited for compact, energy-sensitive Edge Al applications.

Collectively, these technological innovations represent a transformative step in Al hardware, providing solutions
specifically tailored for edge computing environments where energy efficiency, speed and real-time responsive-
ness are paramount.

27 https;//multispinai.eu
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6.3 Comparison of Edge Al hardware platforms

HARDWARE TYPE erRiCiENCY | Dewsiy | SUTABILITY FoR
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Table 6.1: Comparing hardware types

6.3.1 THE ROLE OF SPINTRONICS IN Al HARDWARE EVOLUTION

Spintronics significantly enhances traditional charge-based electronics by exploiting the spin property of elec-

trons in addition to charge transport. While conventional electronics rely primarily on charge to generate voltag-

es, currents and define resistance, spintronics leverages electron spin —a quantum mechanical property repre-

senting intrinsic angular momentum - to achieve more sophisticated functionalities.

This dual utilisation of electron charge and spin opens pathways to advanced technologies and new paradigms in
computing and data storage. The additional functionalities offered by spin-based effects include the following.
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= Non-volatility: Spin-based devices, such as MRAM, retain stored information even in the absence of
power, eliminating the need for continuous energy supply. This inherent memory retention capability
facilitates durable and persistent data storage, crucial for reducing boot-up time and enhancing reliability
in electronic devices.

= Energy efficiency: Spintronic devices drastically reduce power consumption compared to traditional
electronics. This efficiency arises from the minimal energy required to manipulate electron spin states
compared to moving charges through resistive channels. Spintronics thus significantly lowers energy
dissipation, potentially reducing power usage by orders of magnitude, contributing to longer battery life
and more sustainable electronic systems.

The Loihi 2 chip by Intel consists of six embedded microprocessor cores (Lakemont x86) and 128 fully asynchronous neuron cores
connected by a network-on-chip (see https://open-neuromorphic.org/neuromorphic-computing/hardware/loihi-2-intel/).

Intel claims Loihi is about 1,000 times more energy efficient than general-purpose computing systems used to train neural networks
(see https://en.wikipedia.org/wiki/Cognitive_computer).

Information on specific performance metrics for in-memory coprocessors using phase-change memory (PCM)

or ReRAM varies based on implementation. mPower consumption details for these technologies are implementation-specific
(see https://www.spintronics-info.com/new-eu-funded-project-applies-spintronics-field-artificial-intelligence).

The flexibility of PCM and ReRAM-based in-memory coprocessors depends on their design and application.

The MultiSpin.Al project aims to develop an Al coprocessor based on a crossbar of multi-level magnetic tunnel junctions (M2TJ) cells,
enabling n-ary state cells (see https.//researchportal.vub.be/en/projects/multispinai-n-ary-spintronics-based-edge-computing-co-processor-f).
The MultiSpin.Al project is designed to enhance neuromorphic computing by integrating spintronic hardware and Al, aiming for significant
advancements in Al development.
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= Scalability: The intrinsic nature of electron spin allows spintronic technologies to be integrated at very
high densities, facilitating scalability to smaller dimensions without compromising device performance.
This feature is critical for developing the ultra-high-density storage solutions and compact computing
architectures necessary for next-generation electronics, including quantum computing and advanced ICs.

= Low bit-to-bit variability: Spin-based technologies exhibit inherently low variability between individual
bits, ensuring consistently high-accuracy performance, especially crucial for Al workloads. Reduced
variability enhances computational precision, reliability and reproducibility in critical applications, such
as neural network inference, machine-learning accelerators, and precise computational tasks requiring
stable and repeatable results.

In summary, spintronics not only complements but significantly advances traditional electronic approaches by
enabling more efficient, robust, scalable and reliable computing systems, and is therefore poised to address
future technological challenges.

The key spintronic technologies used in MultiSpin.Al are as follows.

= SOT devices: Spin-orbit torque devices utilise spin-orbit coupling to rapidly switch magnetic states. This
enables high-speed, energy-efficient computation, ideal for advanced computing and Al applications,
significantly reducing power consumption and improving device reliability.

= Multi-level magnetic tunnel junctions (M?TJ): M?TJ support multiple magnetic states per cell, enabling
n-ary logic operations. This enhances computational efficiency, reduces energy usage, and increases
accuracy in Al workloads, providing reliable and efficient processing capabilities.

6.4 MultiSpin.Al: A paradigm shift in Edge Al processing

MultiSpin.Al has advantages over conventional Al hardware. For instance, it introduces an n-ary spintronic Al
coprocessor, overcoming the limitations of existing Al accelerators. Key benefits include:

= bypassing the von Neumann bottleneck with memory-integrated Al processing;
= reducing energy consumption by over 1,000 times compared to conventional digital Al chips; and
= enabling high-density, real-time Al inference for edge applications.
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Performance comparison

TECHNOLOGY (E_?C)E::/T’ngFICIENCY LATENCY (NS) SCALABILITY
cpus”’ 1-5 1,000+ Low
GPGPUs™ 10-20 500-1000 Moderate
;‘:i:;‘;:}‘°""‘“ 50-100 100-500 High
n‘s:lsczi::_lm] 1,000+ <10 Very high

6.4.1 THE STRATEGIC IMPORTANCE OF MULTISPIN.Al FOR EUROPEAN Al HARDWARE

So why should MultiSpin.Al be monitored and developed in Europe?
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= Europeaninnovation leadership: Europe currently lacks a major player in Al semiconductor technologies.
Investing in MultiSpin.Al aligns with the European Chips JU initiative, boosting Europe’s sovereignty in
chip development and enhancing competitiveness in next-generation Al computing.

= Alignment with sustainability goals: Al workloads consume increasing amounts of energy. MultiSpin.Al’s
ultra-low power spintronic technology directly supports the European Green Deal, significantly cutting
energy use and aiding sustainable digital transformation.

= Strategic Edge Al applications: MultiSpin.Al's technology benefits critical European sectors such as
automotive, healthcare and industrial automation, enabling efficient, real-time and low-energy Al
processing. This drives innovation, sustainability and competitiveness in key industries.

Traditional CPUs typically exhibit energy efficiencies ranging from one to five TOPS/W, depending on the specific architecture and workload.
CPUs generally have latencies exceeding 1,000 nanoseconds, influenced by factors such as instruction processing and memory access times.
CPUs face scalability challenges due to limitations in parallel processing capabilities and increasing power consumption with added cores.

GPGPUs offer energy efficiencies between 10 and 20 TOPS/W, leveraging parallel architectures for enhanced performance. GPGPUs typically
exhibit latencies ranging from 500 to 1,000 nanoseconds, depending on the specific architecture and workload. GPGPUs provide moderate
scalability, effectively handling parallel tasks, but encounter challenges with memory bandwidth and power consumption as the number of
cores increases.

Neuromorphic chips, such as IBM’s NorthPole, have achieved significant energy-efficiency improvements, outperforming traditional GPUs
in certain tasks (see https.//research.ibm.com/blog/northpole-llm-inference-results). Neuromorphic systems are engineered to process
information in a highly parallel and energy-efficient manner, making them ideally suited for applications requiring low latency

(see https://aditya-sunjava.medium.com/innovative-alternatives-to-gpu-computing-for-parallel-processing-8340f91e1a79). Neuromorphic
architectures are designed for high scalability, enabling efficient parallel processing and adaptability to complex computational tasks.

The MultiSpin.Al project aims to develop a spintronics-based edge computing coprocessor, targeting up to 1,000 times higher energy efficiency
compared to traditional architectures (see https.//multispinai.eu/the-project/). This technology is designed for ultra-low latency responses,
making it ideal for applications requiring instant processing in energy-constrained environments. The spintronics-based design of the MultiSpin.
Al coprocessor offers very high scalability, facilitating efficient parallel processing and integration into various computing environments.
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6.5

Sustaining the Future of spintronic Al hardware

The sustainable future of spintronic Al hardware includes the following pillars.

6.6

Funding and policy support: Securing dedicated funding and policy support is essential to position
Europe as aleaderinspintronic Al. Integrating MultiSpin.Alinto Horizon Europe will provide necessary
resources and enable strategic planning and implementation.

Industry collaborations: Collaborations with semiconductor companies such as STMicroelectronics,
Infineon Technologies, NXP Semiconductors, and research institutions like imec are key to commercialising
spintronic technologies. Their design and fabrication expertise can expedite product development and
market entry.

Academic research: Expanding academic research in spintronic neuromorphic computing will enhance
Europe’s position in next-generation Al hardware. Supporting research on spintronic materials, devices
and algorithms is crucial for innovation and intellectual property creation.

Addressing growing Al demand: Rising Al demand necessitates energy-efficient, high-performance
accelerators. MultiSpin.Al provides an opportunity to advance sustainable Al hardware innovation.
Collaboration among policymakers, academia and industry is vital to develop and commercialise this
technology effectively.

Conclusion

The growing demand for real-time, energy-efficient Al processing is outpacing the capabilities of traditional

digital hardware, prompting a shift toward novel architectures tailored for Edge Al. Spintronic technologies —

exemplified by platforms such as MultiSpin.Al—offer a promising alternative by enabling ultra-low power, scalable

and high-performance Alinference. With advantages such as in-memory processing, non-volatility and quantum-

level efficiency, spintronic systems address key Edge Al challenges, including latency, energy consumption and

device miniaturisation.

MultiSpin.Al, in particular, represents a paradigm shift, delivering over 1,000x energy efficiency improvements

compared to conventional processors. It also aligns with Europe’s strategic goals in sustainability, digital

sovereignty and industrial competitiveness. To fully realise this potential, continued investment, cross-sector

collaboration and targeted research are essential. Spintronic Al hardware not only meets the technical demands

of edge computing, but also positions Europe as a leader in next-generation Al innovation.
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7 KDT and Chips JU Research and Innovation
Timeline

Chips JU (Formerly Key Digital Technologies) is an industry-led initiative aimed at boosting Europe’s semiconduc-
tor ecosystem by tackling critical technological and strategic challenges. Its core focus, “Advanced Chip Design”,
targets next-generation architectures for Al, IoT and edge computing. For this chapter, we will intentionally nar-
row our scope to highlight some prominent trajectories in the current scientific Edge Al landscape, distilling
key insights and outcomes. While other programmes, such as Horizon Europe and national initiatives, also drive
progress in Al and Edge Al, they fall outside our data collection scope.

7.1 Data collection

Projects were sourced from the CORDIS database (European Commission) ® and the Chips JU website™®. After
reviewing their goals and objectives, we categorised them into two groups:

= projects focused on innovative Edge Al hardware and use cases; and

= projects centred on ecosystem development, tools, and engineering platforms.

For each project, we recorded key dimensions, including name, objectives, use cases, and information sources,
including official websites. We used ChatGPT-40 (premium version with web search) to extract project goals and
example use cases, verifying all results for accuracy.

Due to the confidential nature of many deliverables, and their strategic value to industrial partners, this analysis
relies on publicly available data. For the first category, we examined example use cases featured on public project
pages. For the second, we gathered insights on hardware strategies and platforms. This allowed us to identify
the expected outcomes and contributions of each project based on accessible information.

The KDT JU launched Al4DI (Artificial Intelligence for Digitizing Industry) in Europe in 2019, followed by
ANDANTE (Al for New Devices and Technologies at the Edge) in 2020. Both projects have now concluded and
delivered tangible results. Meanwhile, later projects are still ongoing, and their full impact will become evident
in the coming years.

35 https.//cordis.europa.eu
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Figure 7.1: Timeline of the KDT and Chips JU projects

2023 2024 2025 2026

Table 7.1 provides an overview of the project goals, objectives and example use cases.
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Table 7.1: Project goals, objectives and example use cases

PROJECT GOALS AND OBJECTIVES EXAMPLE USE CASES WEBSITE
Al4DI = Advance Moore's Law by Automotive: Al-based logistics solutions for https://ai4di.eu
developing innovative edge optimising assembly processes, development

processing technologies. of autonomous reconfigurable battery

« Bridge Al from centralised systems, virtual Al platforms for .training,.

cloud solutions to distributed deployment of au.tonomot'Js.moblle robotic

edge solutions to increase agen.ts for opgratlonal efflleenc.y,‘and .

efficiency. predictive maintenance using digital twins.
Semiconductor: Enhancing wafer inspection
using Al-based vision systems, automating
semiconductor process inspection, and
improving MEMS sensor predictions through
neural networks.

ANDANTE = Develop innovative hardware/ Digitalindustry: Indoor positioning systems https://www.andante-ai.eu
software platforms leveraging for real-time monitoring, quality control
neuromorphicand SNN using Al-based edge computing.
archltectures forloT and edge Digital Farming: Al-driven systems for pest
devices. and disease prediction in crops, autonomous

weeding robots for sustainable farming.
Transport and smart mobility: Autonomous
drone systems, acoustic signal classification
for underwater applications, robust
autonomous vehicle landing, and multi-
modal path planning.

Healthcare: Al-driven medical imaging
analysis and glucose monitoring systems.

DAIS = Create distributed Al systems Digital industry: Deployment of distributed https://dais-project.eu
that provide faster, secure Al to enable automation and efficiency in
and energy-efficient data manufacturing.
processing. Digital life: Integration of Edge Al in smart

= Ensure connectivity and home environments for enhanced user
interoperability in distributed experience and real-time responsiveness.
Edge Al systems. Transport and smart mobility: Leveraging
Edge Al for improving autonomous vehicle
perception and decision-making, ensuring
secure and reliable communication between
edge devices.

StorAlge = Develop advanced embedded Automotive: Enhanced automotive systems https://storaige.eu
phase change memory (ePCM) leveraging next-gen semiconductor memory
and FDSOI 28nm technologies for faster data processing.
for high-performance edge Industrial applications: High-reliability edge
applications. computing for industrial machinery.

Secure data processing: Edge technologies
designed to improve security and reduce
latency in data transmission and storage.

EdgeAl = Build secure end-to-end Digitalindustry: Integration of advanced https://edge-ai-tech.eu

hardware/software solutions
for Al-driven edge platforms.

Advance hybrid architecture
designs for scalable and
efficient Al systems.

sensing, automated defect classification, and
Al-enabled decision-making in production
environments.

Energy sector: Distributed Al for optimising
energy usage in smart grids and industrial
operations.

Agriculture and food: Use of Al for
predictive analytics, quality control, and
precision farming.

Mobility: Enhancing autonomous vehicle
technologies with Edge Al.

Digital society: Al-driven systems for
activity and intention detection in real-world
environments.
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PROJECT GOALS AND OBJECTIVES EXAMPLE USE CASES WEBSITE
CLEVER = Develop an edge-cloud Fashion: Deployment of virtual fitting rooms https://www.cleverproject.eu
continuum for embedded to improve online shopping experiences.
Al solutions targeting Smart environments: Architectures to
Futuristicindustries and urban detect and adapt to concept drift in dynamic
transformations. environments.
Smart cities: Application of data-driven
transformations for urban development,
infrastructure optimisation, and citizen
services enhancement.

A-1Q Ready = Innovate loT systems by Quantum technologies: Integration of https://www.aigready.eu
integrating quantum sensors multi-physics (Qquantum) sensors to improve
and neuromorphic computing. accuracy in complex environmental sensing

= Build edge-to-cloud solutions applications.
supporting the digital 10T systems: Development of edge-
backbone for Society 5.0. enabled, Al-integrated devices for a wide
range of applications, including smart
home systems, healthcare monitoring and
industrial process automation.

AGRAR- = Develop innovative = Implementation of automated tools for https://www.agrarsense.eu

SENSE microelectronics, photonics precision agriculture, such as robotic
and packaging solutions systems for planting and harvesting.
tailored for agricultural and = Deployment of advanced sensor networks
forestry applications. to monitor crop health, soil moisture, and

= Advance ICT and data environmental conditions, enabling data-
management systems to driven decision-making for farmers.
enable large-scale field
demonstrations that address
real-world industrial needs.
= Improve global food security
and sustainability by deploying
cutting-edge tools that
increase agricultural efficiency
and productivity.

Newlife = Design and develop = Continuous monitoring of maternal vital https://www.newlife-kdt.eu
comprehensive health- signs, such as blood pressure and oxygen
monitoring solutions that levels, using wearable devices and smart
cover the entire pregnancy sensors.
and neonatal period, ensuring = Development of non-invasive imaging
the health and well-being of and diagnostic tools to monitor Foetal
mothers and their babies. development and detect anomalies,

= Employ non-invasive and ensuring timely medical interventions
early-detection methods to when necessary.
identify potential health risks,
such as gestational diabetes
or pre-eclampsia, before they
become severe.
= Lower the incidence of
pre-term births and related
complications, leading to
reduced healthcare costs and
improved quality of life for
families.

AIMS5.0 = Strengthen Europe’s techno- = Integration of Al algorithms to optimise https://aims50.eu
logical and digital sovereignty energy consumption and material
by integrating advanced Al use in factories, reducing costs and
into sustainable production environmental impact.
processes. = Development of smart Al systems that

= Facilitate the transition from assist workers with repetitive tasks,
Industry 4.0, which focuses enhancing safety and ergonomics while
on automation and data ex- maintaining high productivity levels.
change, to Industry 5.0, which
emphasises human-centric,
environmentally friendly and
sustainable workplaces.
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power Al solutions: Al Twilight
focuses on designing and
integrating Al at the edge

in a manner that balances
performance with energy
efficiency.

Foster secure data handling:
Ensures end-to-end data
privacy and integrity while
enabling real-time analytics.

Strengthen European digital
sovereignty: Contributes to
Europe’s competitiveness by
creating Al ecosystems that
reduce dependency on external
technologies.

inspection systems at the edge that rapidly
detect defects on production lines without
large-scale cloud dependencies.

Resource-efficient smart sensors:
Low-power sensors for monitoring critical
infrastructure (eg, water treatment, public
utilities) with on-device intelligence.

Smart healthcare devices: Al-enabled
patient-monitoring solutions that process
vital signals locally, improving responsive-
ness and data security.

PROJECT GOALS AND OBJECTIVES EXAMPLE USE CASES WEBSITE
= Enhance the eco-efficiency of
manufacturing by optimising
resource usage and minimising
waste through Al-driven tools.
EdgeAl- = Create a secure and trust- = Deployment of federated learning https://www.edgeai-trust.eu
Trust worthy ecosystem for Edge models across distributed edge devices
Al, focusing on the design of in healthcare, ensuring data privacy and
architectures, components compliance with regulations like GDPR.
and development tools that = Implementation of real-time decision-
support edge devices. making capabilities in autonomous
= Enable real-time collaboration vehicles using Edge Al to enhance safety,
among heterogeneous edge responsiveness and operational reliability.
devices, ensuring they operate
securely and sustainably in
decentralised networks.
= Advance Al applications for
safety-critical systems, such
as healthcare, autonomous
transportation and cybersecu-
rity, prioritising reliability and
resilience.
Resilient = Secure 10T 5.0 for small and me- Multi-standard IoT communication: https://tima.univ-grenoble-
Trust dium-sized enterprises (SMEs): Integrate a flexible transceiver into STM32 alpes.fr/research/amfors/
Develop an end-to-end security platforms supporting WLAN, UWB, DECT research-projects/resilient-
framework tailored for SMEs, NR+, BLE, ZigBee —allin one chip. trust
addressing vulnerabilities due Drone detection and jamming: Use intel-
to lack of specialised security ligent systems to detect and selectively
resources. jam drone signals for security-sensitive
= Trust and resilience via hard- environments.
ware: Create specialised hard- Secure supply chain (implied): Ensure
ware components (IPs) that traceability of chip lifecycle via blockchain
build system-level trust and ) and physically unclonable functions (PUFs)
protect against quantum-resis- to prevent IP theft and counterfeiting.
tant and Al-based attacks. ) A ) A . L
. . Ambient intelligence in offices (implied):
* Threat modelling and archlt.ec- Trustworthy loT integration for smart office
ture: Perform threat.analy5|s, environments, enhancing data privacy and
identify assets and risks, and system resilience.
define security requirements
to shape the secure system
design.
= Sustainable development and
digital sovereignty: Strengthen
Europe'sindependence in chip
and loT security, fostering soci-
etaland economic value.
Al Twilight = Develop trustworthy, low- Industrial quality control: Al-based https://ai-twilight.eu
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PROJECT

GOALS AND OBJECTIVES

EXAMPLE USE CASES

WEBSITE

hiCONNECTS

= Advance high-speed
connectivity: Focuses
on designing the next
generation of secure, high-
throughput and low-latency
interconnect technologies.

Optimise edge-to-cloud
architectures: Bridges edge
devices and data centres to
enable seamless, scalable
data processing.

Promote interoperability
and standards: Facilitates
cooperation across diverse
platforms to ensure

broad adoption of high-
performance connectivity
solutionsin Europe.

Automotive data networks: High-band-
width interconnects for vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I)
communication, supporting autonomous
driving and advanced driver-assistance
systems. Smart city infrastructure: Robust
data transmission between sensors, traffic
lights and municipal services, improving
urban mobility and resource management.

Industry 4.0 connectivity: Reliable,
real-time communications for factory
automation and robotics, reducing latency
and boosting productivity in manufacturing
environments.

https://www.hiconnects.org

The projects surveyed collectively demonstrate a diverse range of Edge Al solutions that have the potential to

transform industries such as automotive, manufacturing, healthcare and agriculture. Innovations in hardware

(eg, embedded memory, neuromorphic chips), software (eg, federated learning, real-time analytics), and archi-

tectural design (eg, edge—cloud continuum) are unlocking new levels of performance, security and sustainability.

Furthermore, these advancements are fostering cross-sector collaborations, enabling technology transfer and

shared value creation. As Edge Al matures, it holds the promise of more human-centric, resilient and eco-friendly
applications, setting the stage for widespread digital transformation that spans the entire economic and social

landscape.

7.2 Design hardware platforms, engineering tools and ecosystems

KDT and Chips JU fund a series of projects focused on tools and platforms for hardware design, integration and

engineering. Table 7.2 introduces the innovative hardware approaches pursued in these projects.
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Table 7.2: Hardware design, integration and engineering

EXAMPLE APPROACHES FOR

for next-gen machine learning and data
analytics.

Ensure energy-efficient design to meet
edge constraints without sacrificing per-
formance.

Strengthen the European semiconductor
ecosystem through joint research and pilot
deployments.

designs, combining CPU, GPU and
specialised accelerators on a single
chip.

Use of advanced packaging and
interconnect solutions to optimise
bandwidth and reduce power con-
sumption.

Development of EDA tool suites that
integrate Al-specific design libraries.

PROJECT GOALS AND OBJECTIVES HARDWARE ENGINEERING TOOLS WEBSITE
AND PLATFORMS
RETICLES = Develop specialised, high-performance = Creation of reconfigurable https://reticles.eu
reconfigurable hardware platforms and accelerator IP blocks adaptable to
design flows. multiple domains (eg, Al inference,
= Provide tools that simplify system parti- security).
tioning and integration for edge and cloud = Development of toolchains that
applications. automate partitioning across FPGA,
= Foster European sovereignty in next-gen- ASICand processor architectures.
eration computing and Al by promoting = Utilisation of open-source hardware
open standards and collaboration. frameworks for faster prototyping
and validation.
Rebecca-Chip = Drive innovations in chip architecture = Exploration of heterogeneous SoC https://www.rebecca-

chip.eu

hardware paradigms for high-efficiency
computation.

Enable event-driven processing and spike-
based neural networks in real-world edge
scenarios.

Pioneer hardware-software toolchains that
leverage bio-inspired architectures for Al
at the sensor level.

analogue/digital hybrid designs for
real-time, low-power Al.

Development of simulation and
compiler frameworks to map conven-
tional ML models onto neuromorphic
hardware.

Exploration of CMOS and emerging

device approaches for spike-based
computation.

TRISTAN = Provide a trusted hardware platform for = Implementation of secure enclaves https://tristan-project.
Al and high-performance computing (HPC) and cryptographic modules embed- eu
workloads in critical domains. ded at the silicon level.
= Enhance security-by-design = Development of verification work-
methodologies, including hardware-level flows integrating formal methods to
encryption and attestation. validate hardware security proper-
= Accelerate industrial uptake of secure and ties.
performance-optimised chipsets for high- = Integration with hardware-based root
assurance applications. of trust for mission-critical systems
(eg, aerospace).
ISOLDE = Innovate in the design and verification of = Development of multi-level simula- https://www.isolde-
complex SoCs for Al, with a focus on low tion and debugging environments project.eu
power consumption. tailored to Al/ML hardware.
= Offer modular frameworks that shorten = Provision of IP blocks optimised for
time-to-market for embedded and edge battery-powered devices, reducing
computing solutions. leakage and dynamic power.
= Promote standardisation and interop- = Creation of cross-tool integration
erability of EDA tools across industry plugins for streamlined chip design
partners. and verification processes.
LOLIPOP = Advance low power loT platforms through = Use of custom ASIC accelerators for https://www.lolipop-
hardware-software co-design. microcontrollers handling local Al iot.eu
= Facilitate edge intelligence by incorporat- tasks (eg, anomaly detection).
ing lightweight Al accelerators on sensor = Energy harvesting techniques com-
devices. bined with ultra-low-power silicon
= Strengthen the loT ecosystem in Europe, design for loT nodes.
targeting ultra-low power, long-lifetime = Hardware toolkits enabling quick pro-
embedded solutions. totyping of smart sensor solutions.
NeuroKit2e = Research and implement neuromorphic = Integration of SNN cores with https://www.neuro-

kit2e.eu
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These initiatives emphasise hardware-centric innovation, with each project aiming to push boundaries in semi-
conductor design, low power architectures, and security-by-design. They share a drive to refine or develop new
toolchains and platforms that streamline the creation of advanced hardware solutions — whether for FPGAs,
ASICs, neuromorphic chips, or secure SoCs.

Across all projects, energy efficiency and Al acceleration in resource-constrained environments remain central
goals, often achieved by integrating trust anchors, encryption, and neuromorphic or event-driven paradigms at
the silicon level. Lastly, the collective focus on collaborative development and European sovereignty highlights a

broader ambition to bolster the continent’s standing in semiconductor technology and Al innovation."”

37 Concrete benchmarks cannot be disclosed due to the sensitivity and confidentiality of the project deliverables, in order to maintain the
participating companies’ competitive advantage.
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8 Market Dynamics

The market dynamics discussed in this chapter can be observed from the key players driving innovation in Edge
Al and creating new applications in recently growing markets. Market boundaries are becoming blurred as most
European semiconductor companies are now global. Infineon, for example, has the largest number of its employ-
ees in China/Asia.

Strategically important markets are shifting to emerging industrial countries such as India and Mexico, which are
members of the BRICS" alliance. Europe also has a growing need to secure supply chains and gain technological
autonomy in the face of current geopolitical tensions.

Global IT and Al players such as Google, AWS and Tesla have long recognised this global trend, and are building
flexible cross-domain architectures that allow assets to be moved flexibly across domains and countries.

Table 8.1 presents an overview of the leading semiconductor companies, ranked by market capitalisation, as of
February 14, 2025. Of course, market capitalisations are subject to change due to market fluctuations, and this

datais based on the latest available information as of the specified date.

RANK COMPANY MARKET CAPITALISATION (USD)
1 NVIDIA 3.313 trillion
2 Broadcom 1.105 trillion
3 TSMC 1.046 trillion
4 ASML 305.51 billion
5 Qualcomm 190.39 billion
6 Advanced Micro Devices (AMD) 181.18 billion
7 Texas Instruments 164.92 billion
8 Applied Materials 149.75 billion
9 Intel 104.48 billion

10 Lam Research 106.92 billion
11 Micron Technology 106.58 billion
12 KLA Corporation 101.56 billion
13 Marvell Technology 89.55 billion
14 Tokyo Electron 73.93 billion
15 NXP Semiconductors 55.81 billion
16 Infineon Technologies 51.10 billion
17 Analog Devices 103.86 billion
18 SK Hynix 99.96 billion
19 STMicroelectronics 21.41 billion
20 ON Semiconductor 21.45 billion

Table 8.1: The leading semiconductor companies, ranked by market capitalisation
(Source: https.//disfold.com/industry/semiconductors/companies/#google_vignette)

38  BRICS stands for Brazil, Russia, India, China and South Africa. Egypt, Ethiopia, Iran and the United Arab Emirates have also recently joined the

alliance (see https.//www.europarl.europa.eu/thinktank/en/document/EPRS _BRI(2024)760368).
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The biggest European chip vendor companies, such as NXP, Infineon and STMicroelectronics, are in the top 20;
NVIDIA, by a large margin, is ahead of the pack. According to the recent report of market.us™”, the global Edge Al
chips market is projected to grow from USD2.4 billion in 2023 to USD25.2 billion by 2033, reflecting a compound
annual growth rate (CAGR) of 26.5% during the forecast period.

The growth in the Edge Al chips market is driven by several factors.

= Reduced latency: Processing data on-device minimises the delay associated with transmitting data to
centralised cloud servers, leading to faster decision-making.

= Enhanced privacy: On-device processing ensures that sensitive data remains local, reducing the risk of
data breaches and enhancing user privacy.

= Improved efficiency: By handling Al tasks locally, devices can operate more efficiently, conserving
bandwidth and reducing reliance on constant internet connectivity.

These advantages are contributing to the rapid adoption of Edge Al solutions across various industries, including
consumer electronics, automotive, healthcare and manufacturing. It is important to note that market projec-
tions can vary based on different research methodologies and data sources. For instance, some reports suggest
that the global Al chips market, which includes both edge and cloud Al chips, could reach up to USD520.91 billion
by 2033, growing at a CAGR of 37.77%"".

In summary, the Edge Al chips market is poised for substantial growth, driven by the increasing demand for re-
al-time processing, enhanced privacy and improved efficiency in Al applications across various sectors. As leading
market player, NVIDIA offers a comprehensive suite of platforms and solutions tailored for Edge Al applications
across various industries.

39  https.//market.us/report/edge-ai-ics-market

40  https//www.cervicornconsulting.com/artificial-intelligence-chips-market
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Table 8.2: NVIDIA Edge Al technologies (detailed)

TECHNOLOGY DESCRIPTION

KEY FEATURES

WEBSITE

Jetson AGX Orin

and edge computing.

High-performance Al mod-
ule For advanced robotics,
autonomous machines,

= 12-core Arm Cortex-A78AE CPU.

= 2048-core Ampere GPU with 64 Tensor
Cores.

= Up to 275 TOPS Al performance.

= Dual NVDLA deep learning accelerators.
= Supports multi-camera vision Al.

= Configurable power: 15 W -60 W.

https://www.nvidia.com/en-us/
autonomous-machines/embed-
ded-systems/jetson-orin/

Jetson Orin NX

Mid-tier Edge Al module
for robotics, smart camer-
as, and embedded vision.

= 8-core Arm Cortex-A78AE CPU.

= 1024-core Ampere GPU with 32 Tensor
Cores.

= Up to 160 TOPS Al performance.
= Single NVDLA accelerator.
= 10 W-40 W configurable power.

https://www.nvidia.com/en-us/
autonomous-machines/embed-
ded-systems/jetson-orin/

Jetson Orin Nano Entry-level Al module

edge analytics.

for small devices such as
drones, loT sensors and

= 6-core Arm Cortex-A78AE CPU.

= 512-core Ampere GPU with 16 Tensor
Cores.

= Up to 67 TOPS Al performance.
= Power-efficient: 7W - 25 W.

https://www.nvidia.com/en-us/
autonomous-machines/embed-
ded-systems/jetson-orin/

NVIDIA A2 Tensor
Core GPU

network appliances.

Low-profile Edge Al GPU
forinference acceleration
in small edge servers and

= 1280 CUDA Cores, 40 Tensor Cores.
= 16 GB GDDR6 memory.

= 36 INT8 TOPS, optimised for Al
inference.

= PCle Gen4, half-length, single-slot.
= 40 W-60 W power range.

https://www.nvidia.com/en-gb/
data-center/products/a2/

NVIDIA L4 Tensor
Core GPU

High-efficiency Al and

workloads.

video processing GPU for
edge data centres and Al

= 7424 CUDA Cores, 24 GB GDDR6
memory.

= Up to 485 TOPS INT8 inferencing.

= Dedicated AV1 hardware encoding/
decoding.

= 72 W power consumption.

https://www.nvidia.com/en-us/

data-center/l4/

Jetson AGX Orin
Developer Kit

Official development
board for Jetson AGX

robotics prototyping.

Orin, designed for Al and

= Integrated Jetson AGX Orin module.
= Multiple I/O: PCle, Ethernet, USB 3.2,
MIPI CSI for cameras.

= Preloaded with JetPack SDK and
TensorRT.

https://developer.nvidia.com/
embedded/learn/get-started-
jetson-agx-orin-devkit

Jetson Orin NX
Developer Kit
real-world Al testing.

Development board for
Jetson Orin NX, enabling

= Compact design with full I/O support.

= Al-ready with DeepStream and
TensorRT.

= Power-efficient form factor.

https://www.nvidia.com/en-us/
autonomous-machines/embed-
ded-systems/jetson-orin/

NVIDIA JetPack Core software stack
SDK for Jetson platforms,

including Al inference and
vision-processing tools.

= Includes CUDA, cuDNN, TensorRT.
= Supports Ubuntu-based Jetson Linux.

= Cloud-native Al deployment (Docker,
Kubernetes).

= Pre-optimised libraries for Al and vision.

https://developer.nvidia.com/
embedded/jetpack

NVIDIA TensorRT

Al inference engine that
optimises and accelerates
deep learning models for
real-time edge deployment.

= 4x-6x faster inference versus
unoptimised models.

= Optimised for Jetson and NVIDIA GPUs.

= Supports INT8, FP16 quantisation for
efficiency.

= Works with PyTorch, TensorFlow, and
ONNX.

https://developer.nvidia.com/
tensorrt
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TECHNOLOGY DESCRIPTION KEY FEATURES WEBSITE
NVIDIA Al-powered intelligent = Accelerates vision Al applications. https://developer.nvidia.com/
DeepStream SDK video analytics framework = Supports multiple video streams for deepstream-sdk

for edge applications. real-time processing.

= Integrates TensorRT for optimised
inference.

= Used in smart cities, security, and
retail analytics.

NVIDIA TAO Low-code Al model train- = Fine-tunes pre-trained models with https://developer.nvidia.com/
Toolkit ing and optimisation tool transfer learning. tao-toolkit
for edge deployment.

= Requires minimal training data.

= Optimises models for Jetson and
TensorRT.

= Supports vision Al (detection,
segmentation, pose estimation).

NVIDIA Triton Open-source inference = Supports PyTorch, TensorFlow, ONNX, https://developer.nvidia.com/
Inference Server server for deploying Al and TensorRT. dynamo

models at the edge. = Efficient model scheduling and batching.

= Runs on Jetson, edge GPUs, and data
centres.

= Enables multi-tenant Al inference
workloads.

Key offerings include those detailed in Table 8.2, which provides a structured summary of NVIDIA's latest Edge
Al hardware and tools, covering Jetson modules, discrete GPUs, development kits and Al software. These
platforms are designed to bring Al capabilities directly to edge devices, enabling real-time processing, enhanced
privacy, and improved efficiency across various applications. In addition, NVIDIA have designed two new plat-
forms, DIGITS and Cosmos.

= DIGITS: Introduced by NVIDIA at CES 2025, DIGITS is a personal Al supercomputer designed to provide
high-performance Al computing to individual developers, researchers and students. This compact system
is powered by the new NVIDIA GB10 Grace Blackwell Superchip, delivering up to one petaflop of Al
performance. Thisenables users to efficiently prototype, fine-tune and run large Al models directly on their
desktops. Starting at USD3,000, Project DIGITS makes high-performance Al computing more accessible,
reducing reliance on cloud services and associated costs. Its compact design allows it to operate using a
standard electrical outlet, making it suitable for various work environments.

= Cosmos: NVIDIA's Cosmos is a platform designed to accelerate the development of physical Al systems,
such as autonomous vehicles and robots. It offers generative world foundation models trained on
extensive video data, enabling the generation of physics-aware simulations from various inputs. Cosmos
includes advanced tokenisers for efficient data processing and guardrails to ensure safety and ethical
standards. By providing these tools, Cosmos aims to make physical Al development more accessible and
efficient for developers.
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8.1.1 CHANCES AND OPPORTUNITIES FOR THE EUROPEAN VENDORS

European Al chip vendors distinguish themselves from NVIDIA through several unique selling points:

= Energy efficiency: Companies such as Arm Holdings have developed chip architectures renowned for

their energy efficiency. Arm’s designs are widely used in mobile devices and are increasingly adopted in
data centres to reduce power consumption, offering a more sustainable alternative to NVIDIA's GPUs.

Trust, security and safety: Operating within the European Union’s regulatory framework, European
vendors may benefit from policies aimed at promoting high safety and security standards in the tech
industry. Forinstance, the Artificial Intelligence Act, introduced in 2024, contributes to the trustworthiness
of European solutions. European companies’ expertise in power management ICs and embedded
security solutions also provides them with a competitive advantage in Edge Al. Security and safety are
critical for deploying Al in regulated applications like automotive systems, areas often overlooked by
others. Processing data locally at the edge enhances security and data protection, which is essential
for applications such as autonomous vehicles. In terms of products, tools and platforms, the market for
classical, functionally fixed Edge Al is quite mature. Tools for deploying lightweight, domain-specific GenAl

models (NXP’s elQ GenAl Flow) also open the way to deploying GenAl at the edge.

Leading European chip and microelectronics companies, along with prominent research organisations, have

formed the Edge Al Working Group. Together, they have outlined objectives to create a roadmap to guide the

future of Edge Al development. This roadmap aims to sustain Europe’s leadership in the field and to keep pace

with rapid innovations.

8.1.2 STMICROELECTRONICS

STMicroelectronics (ST) offers a comprehensive suite of Edge Al technologies, combining advanced hardware

and software solutions to enable efficient on-device Al across various applications. Tabkle 83 provides a summary

of their key offerings.

Table 8.3: ST key offerings (Source: https.//www.st.com/content/st_com/en/st-edge-ai-suite/tools.html)

TOOL/SERVICE

DESCRIPTION

WEBSITE

ST AloT Craft

An online tool that accelerates the development of
sensor-to-cloud solutions using ST components with
in-sensor Al capabilities. It enables users to create
Al-enabled IoT nodes, program the machine learning
core within MEMS sensors, and explore end-to-end
project examples.

https://www.st.com/content/st com/en/st-edge-ai-

suite/tools.html

NanoEdge Al A free AutoML (Automatic Machine Learning) https://www.st.com/en/development-tools/na-
Studio software that guides users step-by-step to integrate noedgeaistudio.html

Edge Al into embedded projects. It supports over

1,000 Arm® Cortex®-M microcontrollers, offering an

automatic machine-learning model generator and a

user-friendly interface for end-to-end deployment.
ST Edge Al A free online platform that allows users to optimise https://www.st.com/content/st_com/en/st-edge-ai-
Developer Cloud and benchmark Edge Al models across various ST suite/tools.html

devices. Leveraging the ST Edge Al Core, it provides

services such as online Al benchmarking, model opti-
misation and profiling, enabling users to run their Al
models on ST's board farm.
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TOOL/SERVICE

DESCRIPTION

WEBSITE

MEMS Studio

A comprehensive desktop software solution de-
signed to enable Edge Al features on MEMS sensors.
It facilitates the collection, labelling and analysis

of sensor data, profiling and optimisation of neural
network and machine-learning models for the intelli-
gent sensor processing unit (ISPU), and configuration
of the MEMS machine learning core.

https://www.st.com/en/development-tools/
mems-studio.html

ST Edge Al Core

A command-line interface (CLI) tool that allows users
toimport Al models from popular machine-learning
frameworks, perform detailed analyses, and opti-
mise models for deployment on various ST devices,
including sensors, microcontrollers and micropro-
cessors.

https://www.st.com/en/development-tools/st-
edgeai-core.html

ST Edge Al
Model Zoo

A collection of reference Edge Al models optimised
for execution on ST devices. Users can select from
a variety of Al models, retrain them using provid-
ed datasets and scripts, and deploy them in their
applications.

https://stm32ai.st.com/model-zoo/

STM32Cube.Al

A free STM32Cube expansion package (X-CUBE-AI)
that enables developers to optimise, profile and
evaluate neural network and machine-learning mod-
els specifically for STM32 platforms.

https://stm32ai.st.com/stm32-cube-ai/

High Speed
Datalog

Atool designed to manage the acquisition and la-
belling of sensor data. It allows users to capture and
monitor high-rate data, manage data using a Python
SDK, and port projects across multiple MCU series.

https://www.st.com/en/embedded-software/
fp-sns-datalog2.html

StellarStudioAl

An Al plugin for Stellar electrification (E) microcon-
trollers, it facilitates the conversion of Al models,
creation and review of neural network performance
reports, and automatic conversion of pretrained
neural networks.

https://www.st.com/en/development-tools/stellar-
studioai.html

Al for
OpenSTLinux

The X-LINUX-Al is an STM32 MPU OpenSTLinux
expansion package that supports various Al applica-
tions, including pose estimation (Yolov8n), semantic
segmentation (DeeplLabv3), and image classification
(MobileNetv2).

https://stm32ai.st.com/ai-for-linux/

Hand Posture
ToF Al

A hand posture recognition solution that detects a
set of hand postures based on ST's multizone Time-
of-Flight sensors, eliminating the need for a camera.
It recognises seven predefined hand postures using
data from an 8x8 ranging distance and signal rate
matrix.

https://www.st.com/content/st_com/en/campaigns/
st-gesture-and-hand-posture-recognition-imag-mc-
ghpr.html#:~:text=Train%20your%20A1%20t0%20
create%20unlimited%20hand%20postures&tex-
t=0ur%20Hand%20Posture%20ToF%20Al,Ex-
plore%20new%20possibilities%20today!

These tools collectively provide a robust ecosystem for developers aiming to implement Edge Al solutions across
a wide range of applications, leveraging STMicroelectronics’ hardware platforms.
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8.1.3 NXP

NXP Semiconductors offers a broad Edge Al portfolio spanning high-performance application processors, effi-

cient crossover processors, and even microcontrollers, all supported by a unified machine learning software envi-

ronment. These solutions are designed to enable Al at the edge with low latency, privacy and energy efficiency™".

Table 8.4 details NXP's newest processors, development boards, Al accelerators, and software tools for Edge Al

—highlighting key specs, target applications, and innovations, along with how they support model deployment,
optimisation and real-time inferencing at the edge.

Table 8.4: NXP Edge Al technologies

TECHNOLOGY DESCRIPTION KEY FEATURES WEBSITE
i.MX 95 High-performance = 6x Cortex-A55 (2 GHz) for https://www.nxp.com/docs/
Applications Edge Al processor with application processing. en/fact-sheet/IMX95FS.pdf
Processor integrated NPU, GPU, = Arm Mali GPU for advanced 2D/3D graphics.
and safety features. K .
= 2 TOPS elQ Neutron NPU for Al inferencing.
= Dual ISP supporting up to 12MP sensors.
= ASIL-B/SIL-2 Safety Certification.
= EdgelLock Secure Enclave for
hardware-based security.
= Dual GbE TSN for industrial and automotive
networking.
= PCle Gen3, USB 3.0.
i.MX 93 Efficient Edge Al = Dual Cortex-A55 (1.7 GHz) for https://www.nxp.
Applications processor with Arm Linux-based Al applications. com/products/proces-
Processor Ethos-U65 microNPU = Cortex-M33 for real-time tasks. sors-and-microcontrollers/
for low-power Al appli- K arm-processors/i-mx-ap-
cations. - 0.5 TOPS EFhos-U65 microNPU for plications-proces-
Al inferencing. sors/i-mx-9-proces-
= Energy Flex architecture for sors/i-mx-93-applica-
dynamic power control. tions-processor-fami-
= EdgeLock Secure Enclave for ly-.arm-cortex-?gs_-ml-accel.e_:r-
encrypted data storage and authentication. :::;(ogng:power—e icient-mpu:i.
= Dual CAN-FD, GbE TSN. -
= Low power operation for
battery-powered Edge Al.
i.MX 8M Plus Al-focused SoC with in- = Quad Cortex-A53 (1.8 GHz), Cortex-M7 https://www.nxp.com/
Applications tegrated NPU and dual for real-time control. products/
Processor ISP for vision and multi- = 2.3 TOPS NPU for Al workloads.
media applications. X . .
= Dual ISP supporting 1080p60 video input.
= Hardware video encoding (H.265/H.264).
= DSP for audio processing and voice recognition.
= LPDDR4 RAM support.
= Industrial-grade temperature range
(-40°Cto 105°C).
MCXN First NXP-designed = Dual Cortex-M33 at 150 MHz. https://www.nxp.
Series Micro- MCU with integrated = elQ Neutron NPU (30x Al acceleration vs com/products/proces-
controllers NPU for TinyML applica- CPU-only). sors-and-microcontrollers/
tions. L . arm-microcontrollers/gen-
= Integrated DSP for audio/signal processing. eral-purpose-mcus/mcx-arm-
= EdgelLock Secure Enclave. cortex-m/mcx-n-series-mi-
= Ultra-low power consumption (<45 pA/MHz). Ex- crocontrollers:MCX-N-SERIES
tensive analogue and digital peripherals for IoT.

41 https.//www.nxp.com/company/about-nxp/newsroom/NB-NXP-EXPANDS-EDGE-AI-CAPABILITIES-EIQ#:~:text=Deploying%20A1%20at%20

the%20edge,wider%20range%200f%20edge %20processors
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ARTIFICIAL INTELLIGENCE AT THE EDGE

TECHNOLOGY

DESCRIPTION

KEY FEATURES

WEBSITE

i.MX 95
Evaluation
Board

Early-access hardware
platform for testing
i.MX 95 features and Al
acceleration.

SoM with i.MX 95.

Dual camera input.

Multiple display interfaces.

PCle Gen3, USB 3.0.

Ethernet, Audio, GPIO expansion.
Al and vision demos included.

https://www.toradex.
com/computer-on-mod-
ules/verdin-arm-family/
nxp-imx95-evaluation-kit?utm

term=&utm_campaign=PMax-
:+Toradex_EU_Smart_Shop-
ping_Ads_20240205(UK)&utm

source=adwords&utm
medium=ppc&h-
sa_acc=5623819148&h-
sa_cam=20985550698&h-
sa_grp=&hsa_ad=&hsa src=x-
&hsa_tgt=&hsa_kw=&h-
sa_mt=&hsa_net=adwords&h-
sa_ver=3&gad_source=1&gad
campaignid=21184289667&g-
braid=0AAAAAD_Ks1XrlAk-
B_1VmI49AueKd78HYw&g-
clid=EAlalQobChMIuPLE-IS6jg-
MVDJJQBh1DODeCEAAYASA-
AEgItO_D_BwE

i.MX 93
Evaluation Kit

Compact three-board
setup to develop
Al-powered applica-
tions with i.MX 93.

Compute module withi.MX 93 SoC.
Expansion boards for vision/audio interfaces.
Supports Al inferencing on Ethos-U65 NPU.
Pre-loaded machine-learning demos.

Low power Al development-ready.

https://www.nxp.com/de-
sign/design-center/develop-
ment-boards-and-designs/i.
MX93EVK

MCX N9xx-EVK

Evaluation board for
MCX N series MCUs

with built-in TinyML
support.

Onboard sensors (accelerometer, microphone).
Al-optimised power management.
Pre-configured with elQ ML demos.

Secure boot and encryption support.

https://www.nxp.com/
design/design-center/devel-
opment-boards-and-designs/
MCX-N9XX-EVK

elQ Machine
Learning Toolkit

Comprehensive
software suite for Al
model optimisation and
deployment on NXP
hardware.

Supports TensorFlow Lite, Arm NN, Glow
Compiler, DeepViewRT.

Model Zoo with pre-trained models.
Optimisation tools for NXP NPUs and MCUs.
Secure Al model execution with EdgeLock.

https://www.nxp.com/
design/design-center/
software/eig-ai-devel-
opment-environment/
eig-toolkit-for-end-to-end-
model-development-and-de-
ployment:EIQ-TOOLKIT

elQ Time
Series Studio

Automated ML work-
flow tool for time-se-
ries sensor data,
targeting MCU-class
devices.

No-code Al model training for industrial sensors
and predictive maintenance.

AutoML tools for anomaly detection.
Low power Al model optimisation.

https://www.nxp.com/
company/about-nxp/smarter-
world-blog/BL-INTRODUC-
ING-THE-EIQ-TIME-SERIES-
STUDIO

elQ GenAl Flow

Development tool for
deploying small gener-
ative Al models on NXP
edge processors.

Supports domain-specific LLMs.
Local natural language processing.

Retrieval-Augmented Training (RAG) for edge
inference.

Optimised fori.MX 8/9 processors.

https://www.nxp.com/de-
sign/design-center/software/
eig-ai-development-environ-

ment:EIQ

Acquisition by
NXP

Al accelerator special-
ising in accelerating
LLMs and multimodal Al
applications.

accelerator.

Support for transformers with up to 30B
parameters in INT4 precision.

Design and customer wins in growing Edge Al
markets like retail and Al PCs.

EdgeReady Turnkey Al hardware = i.MX RT106F MCU for Al facial recognition with https://www.nxp.com/
Solutions and software for facial liveness detection. applications/technologies/
recognition and voice = .MX RT106V for offline voice command edge-computing/edg-
control at the edge. processing. eready:EDGEREADY
= Low-latency, privacy-focused Al inferencing.
Kinara Kinarais a leading edge = Up to 40 TOPS performance on the ARA-2 https://www.eetimes.com/

nxp-acquires-ai-chip-startup-

kinara/
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Through these innovations, NXP empowers developers to create intelligent, safe, secure, certified and efficient

edge applications.

8.1.4 INFINEON TECHNOLOGIES AG

Infineon is a leading global semiconductor manufacturer specialising in power systems and IoT solutions. Table

8.5 provides a summary of Infineon’s key Edge Al technologies.

Table 8.5: Infineon’s key Edge Al technologies

TECHNOLOGY

DESCRIPTION

KEY FEATURES

WEBSITE

DEEPCRAFT™
Edge Al Solutions

A comprehensive soft-
ware platform enabling
rapid implementation
of Al and ML func-
tionalities in loT edge
devices.

DEEPCRAFT™ Studio: Development
environment for creating or optimising Al
models.

DEEPCRAFT™ Ready Models: Pre-trained,
production-ready Al models optimised for
Infineon’s sensors and microcontrollers.

https://www.infineon.com/
design-resources/embedded-
software/deepcraft-edge-ai-
solutions

extensible develop-
ment environment sup-
porting a wide range of
Infineon microcontrol-
ler devices.

of application-focused software. These
include configuration tools, low-level drivers,
libraries, Al development tools and operating
system support, most of which are compatible
with Linux, macOS, and Windows-hosted
environments.

PSoC™ Edge A new generation = The PSOC™ Edge Family of Arm® Cortex®-M https://www.infineon.com/
Microcontroller of microcontrollers microcontrollers feature high-performance, promo/next-generation-
Family optimised for machine low power, secured MCUs with hardware- mcu?redirld=269245#fFamily-
learning-based applica- assisted ML acceleration for next generation overview
tions, offering scalable applications.
performance, features, | . they support an extensive set of peripheral
and memory options. sets, on-chip memories, timers, robust
hardware security features and comprehensive
connectivity options, built for a variety of
consumer and industrial applications where
device-based intelligent intuitive interaction
is rapidly evolving. This includes appliances,
speakers, wearables, robotics, and other
smart home devices, some of which are also
connected loT products.
ModusToolbox™ ModusToolbox™ = ModusToolbox™ provides a flexible set of https://www.infineon.com/
Software software is a modern, tools and a diverse, high-quality collection design-resources/

development-tools/sdk/
modustoolbox-software

AURIX™ TC4x
Family

Infineon’s AURIX™ TC4x
family of microcon-
trollers focuses on
real-time safe and
secure processing for
edge applications.

They are designed for next-generation
eMobility, ADAS, automotive E/E architectures
and affordable Al applications.

AURIX™ Accelerator Suite:

Parallel Processing Unit (PPU) enabling Al up
to ASIL-D.

Data Routing Engine (DRE), for efficient
communication and data handling.

= cDSP: Programmable digital signal processing
for the ADC signals.

= Signal Processing Unit (SPU): radar accelerator.

= Security Accelerators (CSRM/CSS): Hardware
Crypto Acceleration.

https://www.infineon.com/
products/microcontrol-
ler/32-bit-tricore/aurix-tc4x

These technologies empower developers to create efficient, intelligent edge devices tailored to a wide range of

applications.
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9

Goals, Objectives and Recommendations
For Action

While the early focus in GenAl was on extremely large language models (100s to 1,000 billion parameters) that

demanded substantial computing power, high-speed connectivity, wide bandwidth and huge training datasets,

the field is now evolving toward more efficient and accessible approaches that can deliver strong performance on

narrower use cases and with fewer resources. Today, major tech companies offer lightweight Al models designed

to operate efficiently at the edge, even on low power devices with limited resources, unreliable connectivity, and

stringent real-time or safety-critical requirements (such as for automotive applications). However, addressing

device constraints and limitations demands innovative approaches and a paradigm shift in both hardware and

software development for Edge Al.

The Edge Al Working Group has formulated the following actions.

Achieving strategic autonomy for European business and manufacturing industry involves reducing
dependency on external entities by fostering self-reliance in critical sectors such as technology, defence
and energy. This approach enhances the EU's capacity to act independently, uphold democratic values,
and strengthen its position as a global actor.

Communicating a clear vision to the European Commission and relevant stakeholders is essential for
aligning efforts toward common goals. A well-defined European strategy facilitates open collaboration,
ensures policy coherence and mobilises resources effectively, thereby advancing initiatives that promote
innovation, competitiveness and sustainability within the EU.

Identifying use cases from industry, especially SMEs, is crucial for tailoring technological solutions
to real-world challenges. By understanding the specific needs of SMEs, policies can be designed to
support their integration of Al and other advanced technologies, fostering growth, competitiveness and
democratisation of Al.

Identifying key enabling technologies and building blocks over a five-to-10 year period with a
reasonable market size involves Forecasting technological trends and market demands. This foresight
enables the EU to invest strategically in areas such as Edge Al, ensuring that emerging technologies align
with European values and have the potential for significant economic impact.

Identifying dependencies and risks is vital for ensuring technological autonomy. By assessing reliance
on non-EU technologies and resources, the EU can develop strategies to mitigate risks, diversify supply
chains and strengthen internal capabilities, thereby enhancing resilience against external shocks.

Identifying opportunities for collaboration between industry and research fosters innovation and
accelerates technological development. Partnerships between businesses and research institutions
facilitate knowledge transfer, support the commercialisation of research outcomes, and enhance the EU’s
competitive edge in global markets.

Identifying cross-domain synergies, technology transformations, ecosystem and tool design involves
recognising overlaps between different sectors and technologies. Leveraging these synergies can lead
to more efficient development processes, cost reductions, and the creation of versatile tools that serve
multiple applications, thereby maximising the impact of technological advancements.

Helping companies make decisions about investments in technology development and strategic
collaborations requires providing them with insights into market trends, technological advancements
and potential partnerships. This guidance enables businesses to allocate resources effectively, innovate,
and remain competitive in a rapidly evolving technological landscape.
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= Exploiting enabler technologies such as RISC-V and Green ICT involves adopting open-source hardware
architectures and sustainable information and communication technologies. These technologies promote
innovation, reduce costs and align with environmental goals, contributing to the EU's digital sovereignty
and sustainability objectives.

= Making Edge Al a strategic asset for the Chips JU entails integrating Al capabilities directly into
hardware components. This approach enhances processing efficiency, reduces latency, and supports the
development of advanced applications and programming frameworks, thereby strengthening the EU’s
position in the semiconductor industry.

= Building European on-premises and at the edge Al computational capacities, including being able to run
Al learning and inference workloads both on-premises and at the deep edge, is crucial. These should
have a strong focus on deployment tools and low power chips alongside an unprecedented energy-
efficiency envelope. Developing skills is foundational for supporting advanced technological research
and innovation. Investments in on-premises highly energy-efficient computing infrastructure and
educational programmes ensure that the EU has the necessary resources and talent to lead in fields such
as Al and big data analytics.

= Encouraging education and training about Al usage and development involves creating teaching
programmes that equip individuals with the skills to utilise and build Al technologies responsibly. This
focus on applied Al ensures that the next generation workforce can meet the demands of the European

digital economy and contribute to ethical Al development™.

= Reducing the brain drain requires creating an environment that retains and attracts talent within the EU
by federating the nations to act as a unified human resource organisation. This can be achieved by offering
shared values, competitive opportunities, fostering innovation ecosystems, and providing support for
research and entrepreneurship, thereby preventing the loss of skilled professionals to other regions.

= Supporting and simplifying the creation of startupsin the Edge Aldomaininvolves reducing bureaucratic
hurdles, providing access to funding, and offering mentorship programmes. These measures encourage
entrepreneurship, stimulate economic growth, and drive technological innovation within the EU.
Facilitating the relocation of high-potential talent across the EU is essential for fostering innovation and
sustaining knowledge growth. By enabling mobility, the EU will enhance knowledge retention and ensure
a return on national investments in the education of students and young professionals. To better assess
the impact of these efforts, data should be incorporated on the annual number of STEM graduates in
the EU — an indicator of the region’s potential intellectual capital generated through public educational
investments.

Focusing efforts on areas not yet dominated by the US or Asia allows the EU to carve out niches in emerging
technologies. By identifying and investing in underexplored sectors, the EU can establish leadership positions,
diversify its technological portfolio, and reduce dependency on external technologies. There should be a unified
and collaborative EU effort to achieve human brain energy-efficient chips (eg, 50 Peta Operations/W) focused
on energy-efficient scalable on-premises and Edge Al computing. This would help bring about decarbonisation,
CO, reduction, and water and energy savings, and avoid Al computing centres being supplied by nuclear reactors
as happensin US for high performance and cloud GenAl computing. It should also be a strategic priority on tech-
niques such as data cleaning, compression and augmentation, along with model optimisation methods including
knowledge distillation, pruning and deep heterogenous quantisation.

42  According to talentneuron, there will be a global shortage of over 85 million STEMs by 2030, with a potential loss of USD8.5 trillion in GDP
(see https://www.talentneuron.com/blog/solutions-for-bridging-the-growing-stem-skills-gap). This means it is imperative that the EU develop
the next generation of STEM professionals.
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Collectively, these strategies aim to bolster the EU’s technological sovereignty, foster innovation, and ensure

that European businesses and industries remain competitive on the global stage.

Implementing the following measures will help to achieve these goals. However, addressing the outlined objec-

tives necessitates a comprehensive approach to advancing Edge Al within the EU.

Aligning strategywith globaltrendsand EU initiatives: To maintain competitivenessin Edge Al,itiscrucial
to synchronise strategies with global developments and EU initiatives. The EU has launched significant
programmes, such as like the EU Al Champions Initiative and InvestAl, collectively mobilizing around €200
billion to accelerate Alinnovation across the continent. Aligning with these initiatives ensures that efforts
are cohesive, leveraging shared resources and knowledge to foster technological advancement.

Assessing the Current EU and Global State of the Art in Edge Al: A thorough assessment of the existing
landscape in Edge Al within the EU and globally is essential. This involves evaluating recent advancements,
ongoing research, and emerging applications to identify strengths and areas needing improvement.
For instance, the EU-funded dAIEDGE project unites leading research centers and industrial partners
to develop new paradigms for distributed Al solutions, positioning Europe at the forefront of Edge Al
innovation.

Reducing the Complexity of Edge Al Systems: Simplifying Edge Al systems is vital for broader adoption
and efficiency. Techniques such as data cleaning, compression, and augmentation, along with model
optimization methods like pruning and quantization, can make Al models more suitable for deployment
on resource-constrained edge devices. Additionally, system optimization strategies, including framework
support and hardware acceleration, contribute to more efficient Edge Al workflows.

Organizing Application and Domain Consultations: Engaging with diverse stakeholders through
consultations is crucial for gathering insights and fostering collaboration. Initiatives like the EU's Internet
of Things policy demonstrate the importance of cross-sector collaboration to boost industrial cooperation
through open platforms and standards, thereby achieving European leadership across the entire edge

3
ecosystem'™.

Setting Priorities, Topics, and Benchmarks for Future Chips Act JU Calls: Establishing clear priorities
and benchmarksis essential for guiding future research and funding. The European Chips Act, which came
into force in September 2023, aims to double Europe’s global semiconductor market share to 20% by 2030,
providing €43 billion in public and private investment for chip research and development. Aligning future
Joint Undertaking (JU) calls with this act ensures that resources are directed toward impactful areas in
Edge Al.

Increasing Technology Readiness Level and Promoting Market Readiness: Advancing the Technology
Readiness Level (TRL) of Edge Al technologies involves moving innovations from the lab to real-world
applications. The EU’s investment of €180 million in breakthrough digital technologies, including Al,
robotics, and new materials, underscores the commitment to bridging the gap between research and
market deployment. Focusing on customer-centric research and development ensures that technologies
meet market needs and are poised for successful adoption.

By addressing these facets, the EU can foster a robust Edge Al ecosystem that is innovative, competitive, and

aligned with both regional and global technological advancements. The following objectives will provide guid-

ance for overcoming the highlighted barrios and for maintaining and expanding the position of the European

players.

43  https://digital-skills-jobs.europa.eu/en/actions/european-initiatives/europes-internet-things-policy
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9.1

Objective 1: Create European ecosystem and enforce synergies
between existing ecosystems For fast adoption of Edge Al solutions

The role of edge Al in the computing continuum is growing. The adoption of this technologies especially in safe-

ty-critical systems depends not only on resource efficient tiny ML approaches and models but also on the inno-

vation in engineering and chip design processes including simulation and testing. The main technological mile-

stones and R&l actions should address:

Advancements in Edge Artificial Intelligence (Al) necessitate a comprehensive understanding of various techno-

logical aspects to develop efficient, reliable, and user-centric systems. Here's an elaboration on the key areas:

Migration of the Processing to the Edge: Shifting computational tasks from centralised cloud servers
to edge devices offers benefits like reduced latency and enhanced privacy. Techniques such as advanced
memory management and in-memory computing accelerators are pivotal in this transition. In-memory
computing reduces the energy consumption associated with data transfer between memory and
processing units by performing computations directly within the memory hardware. This approach is
particularly effective in low-power Al edge devices, addressing the memory-wall bottleneck inherent in
traditional architectures.

Foundational Models, Data, and Learning Technologies: Distributed Edge Al involves deploying Al
models across multiple edge devices, enabling localised data processing and decision-making. This
paradigm relies on foundational models tailored for edge environments, efficient data management
strategies, and learning technologies that support decentralised training and inference. By distributing Al
workloads, systems can achieve scalability and resilience, essential for applications such as autonomous
vehicles and smart cities.

Al chips supporting multiple computing paradigms and multi-technology Al: The development of
Al chips capable of supporting various computing paradigms — such as classical computing, analogue,
neuromorphic computing, and deep learning — is essential for versatile Al applications. For instance,
BrainChip’s Akida neural processor integrates event-based processing, mimicking neurological functions
to enhance efficiency in Edge Al applications. Similarly, AMD'’s Instinct MI300 series combines traditional
and Al-optimised cores to accelerate diverse workloads. The emerging novel spintronic hardware for Edge
Al could also be a breakthrough in overcoming the current limitations of existing hardware architectures.

Al verification and certification: Ensuring the reliability and safety of Al systems is critical, especially
in sectors such as healthcare and autonomous driving. Verification and validation (V&V) processes
systematically assess Al models to identify potential errors or biases, validating their performance against
predefined criteria. Techniques include testing against representative datasets, conducting simulations,
and analysing decision-making processes to ensure Al systems operate within acceptable bounds.

Al explainability, interpretability, verification and certification for building trust in Al systems:
Establishing trust in Al systems is essential for their widespread adoption and responsible deployment.
This begins with explainability and interpretability, which aim to make Al decision-making processes
understandable and transparent to humans — an increasingly important requirement for both user
acceptance and regulatory compliance (eg, the Al Act). Equally important are verification and certification
processes, which ensure that Al systems adhere to standards of safety, fairness and reliability. These
practices help validate that Al behaves as intended, particularly in high-stakes applications. Trustworthy
Al also encompasses model security, including the authentication of deployed models, monitoring their
evolution over time, and verifying the quality and integrity of the data used during training. Together,
these elements form the foundation for deploying Al systems that are not only powerful but also
accountable and secure.
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= Interoperability, scalability and modularity: Designing Al systems with these features ensures seamless
integration across diverse platforms, as well as the ability to adapt to growing demands.

= On-device training is the learning mechanism that powers Self-X functionalities: Such training should
include self-learning and self-adaptation, self-configuration, self-healing, and self-optimisation to enable
Al systems to become robust, autonomous, context-aware and adaptive, all without cloud dependence,
thus enhancing resilience and efficiency.

= Engineering tools for designing, training, optimising, deploying, updating, and robustness against
cyber-attacks and maintaining Edge Al: Specialised engineering tools facilitate the lifecycle management
of Edge Al applications. These tools assist in designing, training, updating and maintaining Al models,
ensuring they remain effective and secure over time. For example, Al-powered verification tools enhance
the efficiency of SoC design verification, reducing manual effort and improving accuracy.

= Support for the entire lifecycle from requirement specification to end-of-life: Comprehensive support
throughout the Al system lifecycle — from requirement specification, design, development, deployment,
operation, maintenance, evolution, to end-of-life — is vital for sustainability and compliance. This holistic
approach ensures that Al systems are developed responsibly, maintained effectively and decommissioned
safely, aligning with ethical and regulatory standards.

= Human interaction with Al: Optimising human-Al interaction focuses on creating natural interfaces and
interactions, and ensuring Al systems understand and respond to human inputs effectively. This involves
natural language processing, adaptive learning, and user-centric design principles to enhance user
experience and trust in Al applications.

= Intent-driven optimisation, machine-to-machine interaction, interaction with digital twins: Intent-
driven optimisation allows Al systems to anticipate and act upon user intentions, improving efficiency and
personalisation. Machine-to-machine (M2M) interactions enable devices to communicate and collaborate
without human intervention, essential for the IoT. Interaction with digital twins (metaverse and virtual
worlds) - virtual replicas of physical systems - facilitates real-time monitoring, simulation and optimisation,
enhancing decision-making and operational efficiency.

Understanding and integrating these aspects are crucial for advancing Edge Al technologies, leading to more
efficient, reliable and user-friendly applications across various industries. Education and professional training
should supplement the outlined R&I actions for skill and capacity building in Europe.

9.2 Objective 2: Foster collaboration along the Al value chain in
Europe, from chip vendors to system integrators, along with
collaboration across EU stakeholders in the ECS value chain,
from chip designers to integrators to manufacturers

NVIDIA is currently the major market player with a growing ecosystem of hardware and software application pro-
viders in quickly evolving domains (such as robotics). It saves integration costs by providing complete solutions
to consumers, while its easy-to-use software development kits (SDKs) for management, integration and deploy-
ment effectively create a vendor-lock and stronger customer retention. NVIDIA is in charge of the updates of the
APIs, and maintains the value chain under its control.
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Source: DECISION Etudes & Conseil

Figure 9.1: Cloud-edge-loT market structures and ecosystems
(Source: https.//op.europa.eu/en/publication-detail/-/publication/ff35c457-8f3b-11ee-8aab-01aaz5ed7 1al/language-en)

The European Edge Al ecosystem is currently fragmented and lacks a dominant player. STMicroelectronics coop-
erates with NVIDIA, and provides APIs and tools for integration with NVIDIA management and deployment SDKs
and hardware solutions. In addition, Infineon expanded its safe automated driving collaboration with the NVIDIA
DRIVE™ Pegasus Al car computing platform in 2018.

European players are currently within the circle of suppliers for NVIDIA's solutions, making NVIDIA the fast-
est-growing and most valuable chip vendor company in the market. The latest Blackwell chip cost USD10 billion
in R&D, according to public interviews by NVIDIA's CEO. No hardware industry in Europe can achieve such invest-
ment for a single chip, nor could one imagine EU taxpayer funds being used to achieve this level of investment.
Therefore, on-premises and energy-efficient edge computing is the most effective EU alternative for investment.
An embedded software, application and service ecosystem should be created to complement edge chips, as
industries are already proving through a strong focus on SMEs to help them transition toward Al endorsement.

To challenge NVIDIA's dominance in the Edge Al sector, establishing an open ecosystem akin to Kubernetes™*!
in cloud computingis essential. This ecosystem should encompass modular edge platforms and infrastructures, fa-
cilitating the integration of diverse European hardware and software solutions, thereby mitigating vendor lock-in.

Achieving seamless collaboration necessitates a unified vocabulary that bridges hardware and software do-
mains, fostering effective communication and knowledge sharing. Leveraging large language models can as-
sistin aligning disparate concepts and terminologies. Revisiting and updating existing reference architectures,
such as RAMI 4.0 could Further support this integration.

44  https://kubernetes.io

45  Reference Architectural Model for Industry 4.0 (RAMI4.0):
https.//www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.htm!
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Such harmonisation would promote a balanced market landscape, enhancing the competitiveness of European
enterprises. Virtualisation and simulation technologies are pivotal for ensuring seamless integration, trust and
collaboration. Given the diverse stakeholders in the value chain, implementing certification mechanisms —such
as automated and secure onboarding for systems of systems —and ensuring compliance with standards is cru-
cial, especially in safety-critical applications.

Collaborating with global players, SMEs and startups is also vital. Large corporations offer generic components
that can be customised, while SMEs and startups, closely aligned with end-users, act as system integrators, tai-
loring solutions to specific needs. A modular and integrated approach would streamline the development of
customised solutions. However, challenges such as GDPR compliance and stringent security requirements may
impede collaboration with SMEs.

The European Chips Act should emphasise the co-design of software and hardware, exploring Al methodolo-
gies beyond GenAl, including tinyML, federated learning, and reinforcement learning. Initiatives could focus
on enhancing interoperability across the value chain through a shared vocabulary, potentially by funding plat-
forms that support diverse approaches and modular architectures, revising frameworks such as RAMI4.0 or the
Asset Administration Shell (AAS). Engaging open-source organisations, incubators and accelerators as part-
nersis essential for ecosystem development. Identifying and collaborating with early adopters of Edge Al tech-
nologies —such as startups, researchers and SMEs — will be crucial in the coming years to scale novel solutions.
Notably, countries such as South Korea and Singapore are more receptive to new technologies compared to
Europe’s conservative stance. European companies should strategise their market entry by considering global
adoption dynamics.

To remain competitive globally, the technology stack must address both vertical and cross-domain aspects.
Given the evolving requirements, a singular, generic technology stack is impractical. Instead, developing a flex-
ible, modular stack composed of interoperable building blocks is imperative. This approach requires ongoing
standardisation and interoperability efforts across various domains. Throughout this development process,
identifying gaps will highlight opportunities for startups and SMEs, fostering innovation and growth within
the European Edge Al ecosystem.

9.3 Objective 3: Create greater market impact along the Al value chain
For Edge Al applications

The increasing demand for low-latency and energy-efficient solutions across diverse applications — such as
autonomous driving, assistive systems and robotics — is creating new opportunities for Edge Al technologies.
This trend is further reinforced by the increasing need for secure, Al-enabled manufacturing equipment, and
the growing integration of Al into medical devices, enabling less invasive, more personalised treatments.

= Delivering clear value through innovation: To foster impactful innovation across Europe, we must
begin with a clear vision of the end product and its real-world value. Academic research, particularly
within universities, should be more closely aligned with industry needs and user-driven priorities.
Strengthening the flow of information between research institutions, industrial partners and end-users
will ensure that technological advancements are relevant, scalable, and contribute meaningfully to
societal progress.

= Balancing cost and value: As semiconductor technologies advance, costs are rising —especially with the
transition to 2nm and 3nm nodes, where transistor density increases significantly. The cost-reducing
effects of Moore’s Law are diminishing, particularly in the Al domain. However, by focusing on the value
created for end-users, we can justify the necessary investments in infrastructure, supply chains and
advanced manufacturing processes.
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= Aligninginnovation with market need: Semiconductorinnovation must be market-driven. Europe cannot
rely solely on advanced manufacturing capabilities; a strong high-end market is also essential. Strategic
collaboration — especially among leading European players such as Infineon, NXP and STMicroelectronics
—is crucial to develop demand and share investment burdens effectively.

= Strengthening policy, research and industry collaboration: Policymakers should shape funding and
evaluation frameworks that prioritise long-term impact over short-term outputs. Researchers, in turn,
should focus on application-oriented projects with clear pathways to market. Meanwhile, industry
stakeholders must engage early in the research process to help guide innovation toward viable, high-
impact solutions.

= Encouraging knowledge and IP sharing within Europe: Rigid intellectual property barriers can hinder
early-stage innovation. A well-structured framework for shared innovation can amplify impact and
reinforce Europe’sindustrial foundation. Cross-layer collaboration—spanning Al, hardware, and embedded
systems—should be prioritised to avoid vendor lock-in and ensure platform portability across applications.

= Transferring research to meet market demands: Instead of measuring success by publication volume
alone, we should emphasise innovations that have the potential to transform markets, address pressing
societal challenges, and solidify Europe’s leadership in critical technologies. Achieving this requires a
long-term, collaborative approach across sectors, with a focus on strategic alignment and real-world
applicability.

= Enabling strategic, pre-competitive cooperation: In sectors such as automotive, there are already
tangible benefits from shared reference architectures for Al and semiconductors. For example, BMW is
driving a collaborative ecosystem for software-defined vehicles with partners that include Bosch, Imec,
Cadence, Synopsys, Siemens and Arm as part of the Automotive Chiplet Programme™. Standards and
harmonisation will be key to building a competitive and open European technology landscape.

= Fostering European and international collaboration: To meet the challenges posed by GenAl and
emerging technologies, Europe must intensify its collaborative efforts across the ecosystem. Initiatives
such as the Edge Al Foundation — despite their North American origins — offer valuable platforms for
European participation, knowledge sharing, and alignment with customer needs in an open, value-driven
manner.

= Achieving strategic technological autonomy: Europe’s continued reliance on foreign sources for key
technologies, including semiconductors and Al, poses risks to its economy, democracy and technological
sovereignty. Addressing this dependency is an urgent strategic imperative. By investing in our capabilities
and reinforcing cross-border collaboration, we can secure Europe’s leadership and autonomy in the global
technology landscape.

Edge Alisata pivotal moment. To unlock its full potential, Europe must accelerate innovation by improving devel-
opment tools, reducing fragmentation, and fostering cross-sector collaboration. Unlike cloud Al, which benefits
from standardised platforms, Edge Al faces complexity and heterogeneity, requiring tailored design approaches
for everything from ultra-low power devices to high-performance chips. GenAl is a transformative force and key
driver of current market momentum. Acting swiftly to develop European foundation models and Al tools is essen-
tial. Strategic cooperation and shared standards — as seen in efforts such as the Automotive Chiplet Programme
—are vital to advancing software-defined mobility and Edge Al. Embracing system-level thinking, encouraging IP
sharing under proper frameworks, and fostering cross-layer optimisation will be critical for Europe’s leadership
in next-generation Al.

46  https//www.imec-int.com/en/press/arm-ase-bmw-group-bosch-cadence-siemens-siliconauto-synopsys-tenstorrent-and-valeo-commit
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ABBREVIATIONS

A

AAS - Asset Administration Shell

ADAS - Advanced driver-assistance system
ADC - Analogue-to-digital converter

AGI - Artificial General Intelligence

Al - Artificial Intelligence

Al4DI - Artificial Intelligence for Digitizing Industry
AloT — Artificial intelligence of things
ANDANTE — Al for New Devices and
Technologies at the Edge

ANN - Artificial neural network

API - Application programming interface

ASIC - Application-specific integrated circuit
ASRA - Advanced SoC Research for Automotive
AutoML — Automatic Machine Learning

B
BRICS — Brazil, Russia, India, China and South Africa

C

CAGR - Compound annual growth rate

CEA - Commissariat a |'énergie atomique et aux
énergies alternatives

CEO - Chief executive officer

CES - Consumer Electronics Show

Chips JU - Chips Joint Undertaking

CIM — Compute-in-memory
CLI-Command-line interface

CMOS - Complementary metal-oxide semiconductor
CNN - Convolutional Neural Network

CoAP - Constrained application protocol

CPU - Central processing unit

CRISPR - Clustered regularly interspaced short
palindromic repeats

CSRM - Cybersecurity risk management

CSS - Cybersecurity satellite

D

DL - Deep Learning

DNN - Deep Neural Network

DRAM - Dynamic random-access memory
DRE - Data Routing Engine

E
E/E - Electrical/electronic
ECHO - Edge CHip to clOud

ECS - Electronic components and systems
ECU - Electronic control unit

EDA - Electronic design automation
ePCM - Embedded phase change memory

F
FDSOI - Fully depleted silicon on insulator
FPGA - Field programmable gate array

G

GAN - Generative Adversarial Network

GDPR - General Data Protection Regulation

GenAl - Generative Al

GPGPU - General-purpose graphics processing unit
GPU - Graphics processing unit

H
HPC - High-performance computing

|

1/0 - Input/output

IC - Integrated circuit

ICT - Information and communications technology
loT — Internet of Things

IP - Internet protocol

ISP —Image signal processor

ISPU - Intelligent sensor processing unit

J
JU - Joint undertaking

L
LLM - Large Language Model

M

M2M — Machine-to-machine

M2TJ - Multi-level magnetic tunnel junction
MAS — Multi-agent system

MCU - Microcontroller

MEMS - Micro-electro-mechanical systems
ML — Machine Learning

MQTT - Message queuing telemetry transport
MRAM — Magnetic random-access memory

N

NLP - Natural language processing
NoE — Network of Excellence

NPU - Neural processing unit
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o
OxRAM - Oxide-based resistive RAM

P
PCB - Printed circuit board

PCM - Phase-change memory
PCRAM - Phase-change RAM

PPU - Parallel Processing Unit

PUF - Physically unclonable function
PULP - Parallel Ultra-Low Power

R

R&l - Research and innovation

RAG - Retrieval-Augmented Training
RAM - Random-access memory

RAMI4.0 — Reference Architectural Model
for Industry 4.0

ReRAM - Resistive RAM

RVV - RISC-V Vector Extension

S

SDK - Software development kit
SME - Small and medium-sized enterprise
SNN - Spiking Neural Network

SoC - System-on-a-chip

SOT - Spin-orbit torque

SPU - Signal Processing Unit

SRAM - Static random-access memory

ST - STMicroelectronics

STCO - System technology co-optimisation
STDP - Spike-Timing-Dependent Plasticity
STEM -Science, technology, engineering and
mathematics

T
TinyML - Tiny Machine Learning

TOPS - Trillions of operations per second
TPU - Tensor processing unit

TRL - Technology readiness level

TSMC - Taiwan Semiconductor Manufacturing Co

\"}

V&V - Verification and validation
V21 - Vehicle-to-infrastructure
V2V - Vehicle-to-vehicle
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