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1	 Introduction
In recent years, digitalisation, the availability of data and the possibilities for applying Artificial Intelligence 

(AI) have become important business drivers for Europe’s key industrial sectors. In our understanding, AI is a 

technical system that has the ability to mimic human intelligence, which is characterised by behaviours such as 

sensing, learning, understanding, decision-making and acting. Due to the availability of powerful computing 

hardware (graphics processing units (GPUs) and specialised architectures) and large amounts of data, AI solutions 

– in particular Machine Learning (ML), and more specifically Deep Learning (DL) – have found numerous and 

widespread applications over the last two decades (including image recognition, fault detection and automated 

driving functions).

Low latency, privacy, connectivity limits and distributed applications have driven research in Edge AI, which en-

ables processing and decision-making near data sources – across cloud, edge, and Internet of Things (IoT) devices. 

It involves training AI models in the cloud and deploying them on edge devices.

In 2021, the EPoSS Edge AI Working Group published a white paper called “AI at the Edge” [1], which provided a 

broad overview of AI methods and techniques, together with technological milestones to guide the research and 

innovation over the next few years.

Following the publication of this white paper, two industry associations – EPoSS and INSIDE – joined forces. The 

joint Edge AI Working Group is a community of hardware and software experts from industry and academia who 

drive research and innovation for both national and EU-funded projects, and contribute their insights and views 

concerning the future of Edge AI.

Recent breakthroughs, and in particular in the domain of Generative AI (GenAI), have driven a clear need to revise 

our roadmap, including the technology milestones, to better understand and exploit the potential of GenAI in 

the computing continuum, including at the edge. Figure 1.1 shows how to read our refined and updated Vision.

1    EPoSS Whitepaper, 2021, “AI at the Edge“ (available at https://www.smart-systems-integration.org/publication-eposs-ai-white-paper)

https://www.smart-systems-integration.org/publication-eposs-ai-white-paper/
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Figure 1.1: How to read this document

This white paper begins with an overview of the evolving cloud-edge-IoT ecosystem, highlighting the critical 

role of intelligent, resource-constrained devices that interact with both humans and machines. Chapter 3 then 

explores the current AI trajectory, including the five levels of Artificial General Intelligence (AGI) coined by 

OpenAI CEO Sam Altman[2]. Chapter 4 dives into cutting-edge hardware architectures, while Chapter 5 examines 

the many challenges, constraints and limitations around innovation in hardware for Edge AI development. 

Chapter 6 introduces a novel spintronics-based solution that addresses the memory-wall issue with impressive 

energy efficiency and performance. Chapter 7 outlines the timeline and expected outcomes of KDT and Chips 

Joint Undertaking (Chips JU) projects in the coming years. Chapter 8 analyses global market trends, spotlighting 

Europe’s Edge AI landscape and NVIDIA’s growing dominance in the ecosystem. The final chapter outlines 

important goals, objectives and recommendations for action that will boost the competitiveness of European 

companies, building on the insights from earlier chapters.

2    https://www.forbes.com/sites/jodiecook/2024/07/16/openais-5-levels-of-super-ai-agi-to-outperform-human-capability
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https://www.forbes.com/sites/jodiecook/2024/07/16/openais-5-levels-of-super-ai-agi-to-outperform-human-capability/
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2	 Evolving Cloud-Edge-IoT Infrastructures  
and Data-driven Value Chains

The distributed and resource-constrained nature of edge computing presents challenges that are different from 

those of centralised computing. Deploying AI on edge devices presents significant technical challenges, largely 

due to heterogeneity: the variety of hardware platforms, real-time operating systems, sensor types, and AI work-

loads. While classic AI is now effectively deployed at the edge, GenAI has introduced new complexities. From 

around 2014 with the rise of Generative Adversarial Networks (GANs) and popularised by breakthroughs such 

as Transformers (2017), GenAI workloads have become increasingly hyperparameterised and resource-intensive.

The findings collected in the study “Transitioning from TinyML to Edge GenAI: A Review”[3] underscore the growing 

interest in deploying Edge GenAI models specifically on smartphones. For instance, imagine a hypothetical 

service designed specifically for Gen Z smartphone users. It comes with a USD15 monthly subscription and sets a 

strict performance expectation: latency must not exceed five seconds. Meeting these demands at scale presents 

significant challenges, raising questions about the readiness of the current infrastructure for widespread 

deployment.

A case study with Qwen2-VL-7B-Instruct[4], a cutting-edge multimodal GenAI model, highlights some of the key 

scalability challenges. With modest usage assumptions (60 tokens per user per query, and a five-second latency 

limit), serving all 5.16 billion smartphone Gen Z users would demand:

	� over 40,000 AI superclusters (each on the scale of NVIDIA’s Cortex AI cluster[5]);

	� power infrastructure of up to 130 MW per cluster; and

	� unfeasible levels of acceleration and cost.

In short, large-scale GenAI deployment via the cloud is neither economically nor environmentally sustainable. 

However, for training GenAI models, cloud computing remains essential; to preserve data privacy and sovereign-

ty, on premises AI training is also a promising direction to attain some relief from cloud dependency.

3    https://www.mdpi.com/2504-2289/9/3/61

4    https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct

5    https://technologymagazine.com/ai-and-machine-learning/a-first-look-at-elon-musks-new-cortex-ai-supercluster

https://www.mdpi.com/2504-2289/9/3/61
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
https://technologymagazine.com/ai-and-machine-learning/a-first-look-at-elon-musks-new-cortex-ai-supercluster
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Figure 2.1: Cloud-Edge-IoT ecosystem view

In Edge AI systems, data is both collected and processed locally at or near the edge of the network, leveraging 

IoT devices and resource-constrained hardware. Cloud-edge-IoT infrastructures must be highly adaptable to ac-

commodate varying data volumes, velocities, and privacy and security requirements. The data journey begins 

with collection at tiny sensors, data generators, and micro-devices. Based on the application’s needs and privacy 

considerations (see Table 7.1), the data is either processed locally or transferred to cloud or high-performance 

computing infrastructures for advanced optimisation and decision-making tasks.
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The tech stack for data-driven Edge AI consists of several interconnected layers that enable the collection, 

processing and application of data. The key building blocks include the following.

	� GenAI, foundation models, high-quality datasets and data spaces: Robust AI solutions at the edge rely 

on foundation models and high-quality datasets. Common European Data Spaces offer the infrastructure 

for federated, distributed sharing of these datasets.

	� Multi-agent systems: Powered by specialised Large Language Models (LLMs) and foundation models, 

these agents deliver high performance while being optimised for resource-constrained devices such as 

smartphones. They enable advanced AI functionalities directly at the edge.

	� Digital twins, metaverse/omniverse, and virtual worlds: Virtual models of physical objects use real-

time sensor data to simulate behaviour, monitor operations, and optimise performance throughout their 

lifecycle.

	� Neural architecture search: To automatically devise AI models to solve edge problems by leveraging 

on-premises AI energy-efficient computing and data availability.

	� Orchestration and brokering: Automating the configuration, management and coordination of systems, 

applications, services and devices for streamlined operations.

	� Trust and security: Incorporating software and hardware components to ensure system reliability, 

privacy, robustness, dependability, safety and performance, all critical for secure deployments.

Each of these building blocks represents an innovation area together with market opportunities, with emerging 

or established players driving innovation to accelerate Edge AI adoption across the computing continuum.

The broader view aims to illustrate key interactions within the ecosystem, revealing the complexity of depen-

dencies together with associated challenges and potential risks. In this context, Chapter 4, “Overview of New 

Hardware Architectures”, focuses on the specific challenges of running Edge AI on resource-constrained devices. 

This ecosystem perspective offers a strategic lens to understand the research and innovation activities of KDT 

and Chips JU projects described in Chapter 7, as well as market structure with the positioning of dominant players 

explored in Chapter 8. The next chapter, “AI and Edge AI Development Trends: Setting the Scene”, explores the 

evolution of AI, highlighting key trends that are shaping the future of innovation in Edge AI.
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3	 AI and Edge AI Development Trends:  
Setting the Scene

3.1	 Most discussed Edge AI topics

AI is the most rapidly developing technologies that is affecting and challenging the current technological 

landscape. According to Gartner’s Hype Cycle[6], Edge AI has surpassed its peak and is expected to reach a “plateau 

of productivity” within two years. This signifies the technology’s transition through its initial phases of hype, 

disillusionment and experimentation, ultimately becoming a standard and reliable tool for various use cases. 

Furthermore, according to the Bank of America, the Taiwan Semiconductor Manufacturing Co (TSMC) will enable  

USD1 trillion in manufacturing digital chips by 2030 [7] for its driving customers through AI computer servers, 

including on-premises AI, Edge AI, tiny, and in particular agentic, including humanoid robots[8].

GenAI introduces new challenges, particularly in the context of distributed computing environments. The train-

ing of generative AI models, especially LLMs, requires a huge amount of computing power and energy, usually 

provided by cloud computing infrastructures and efficient data centres. According to Yann LeCun, modern LLMs 

are trained with 20 trillion tokens, with each token comprising three bytes – so that’s 10¹⁴ tokens! In the first four 

years of life, the brain receives 16,000 hours of visual information at 2 MB/s. This is the equivalent amount of in-

formation needed to train an LLM. Therefore, for the foreseeable future, we will be very far (perhaps light years) 

from achieving superhuman intelligence. It remains to be seen what computing and energy resources would be 

required to power such a computer should humanity ever reach that point.

High-quality datasets are fundamental to the training of LLMs as they ensure the development of accurate, 

unbiased and comprehensive representations of language. These datasets minimise the propagation of errors 

and biases, thereby enhancing the model’s generalisation capabilities and reliability. High-quality data collected 

from IoT devices and sensor networks reduces noise during training, enabling the model to focus on meaningful 

patterns and relationships for more efficient learning. This ensures that LLMs achieve higher performance, par-

ticularly in real-world applications and complex tasks requiring contextual understanding and domain-specific 

expertise. Consequently, the quality of training data directly influences the trustworthiness, applicability and 

ethical deployment of LLMs across diverse fields. The objective of Common European Data Spaces[9] is to estab-

lish uniform data infrastructures and governance frameworks that enable data pooling, access and sharing. This 

allows them to provide high-quality resources for data-driven AI-based applications.

The recent breakthroughs in AI technologies have had a significant impact on the technology landscape. The 

most intensively discussed areas in the Edge AI community are currently the following.

	� LLMs enable machines to understand, reason and generate human-like language, revolutionising natural 

language processing (NLP) tasks.

	� GenAI enables the creation of novel content such as images, music and text using advanced transformer 

and other architectures of generative models.

6  https://www.gartner.com/en/articles/hype-cycle-for-artificial-intelligence

7  https://www.investing.com/news/stock-market-news/how-tsmc-is-enabling-1-trillion-semiconductor-era-4010839

8  https://www.forbes.com/sites/johnkoetsier/2025/04/30/humanoid-robot-mass-adoption-will-start-in-2028-says-bank-of-america

9� https://digital-strategy.ec.europa.eu/en/policies/data-spaces

https://www.gartner.com/en/articles/hype-cycle-for-artificial-intelligence
https://www.investing.com/news/stock-market-news/how-tsmc-is-enabling-1-trillion-semiconductor-era-4010839
https://www.forbes.com/sites/johnkoetsier/2025/04/30/humanoid-robot-mass-adoption-will-start-in-2028-says-bank-of-america/
https://digital-strategy.ec.europa.eu/en/policies/data-spaces
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	� Responsible AI focuses on building trustworthy AI systems that prioritise ethical decision-making, fairness 

and societal well-being. It also promotes transparency and accountability in AI processes. However, it 

requires the creation of governance frameworks and regulatory policies to align AI development with the 

principles of responsibility, sustainability and social impact.

	� Multi-agent AI systems (MAS) are composed of multiple intelligent agents that can sense, search 

information, learn and act autonomously to achieve individual and collective goals. Powered by artificial 

reasoning intelligence, these systems demonstrate building sequences of thought capabilities by being 

flexible, scalable and robust to enable broader real-world impact across industries. MAS involve multiple 

interacting agents – software or hardware entities – that work together to solve complex problems 

beyond their individual capabilities.

	� Embodied (physical) AI refers to the use of AI techniques to solve problems that involve direct interaction 

with the physical world – for example, by observing the world through sensors or modifying the world 

through actuators. It integrates AI into physical systems, and is increasingly combined with digital twins 

and simulations to improve performance and decision-making in various industries.

	� AI and quantum computing is still an emerging technology, promising breakthroughs in optimisation, 

cryptography and drug discovery through quantum speed-ups. It has accelerated the need for hybrid AI-

quantum algorithms, and novel computational and open programming frameworks.

One of the most debated emerging topics in AI is Artificial General Intelligence (AGI)[10]. According to Gartner, 

AGI refers to AI that can understand, learn and apply knowledge across a wide range of tasks and domains. Unlike 

narrow AI, which is designed for specific applications, AGI possesses cognitive flexibility, adaptability and general 

problem-solving skills.

AGI is defined as AI capable of surpassing human performance in most tasks. Sam Altman, CEO of Open AI, a 

leading force in GenAI and the creator of ChatGPT, uses a five-tier scale to measure progress toward this goal[11]:

1. Conversational AI (current stage): At this level, AI interacts with users in natural language. Think of 

customer service chatbots, AI writing assistants such as ChatGPT, or AI coaches. Most businesses today 

leverage AI at this stage.

2. Reasoning AI (near future): This stage introduces “reasoners” – that is, AI capable of sequences of 

thought to achieve problem-solving at a level comparable to a PhD graduate, but without external tools.

3. Autonomous AI: Here, AI “agents” can operate independently for days, managing tasks without human 

intervention. Unlike today’s automations, which require monitoring, future AI at this level will be self-

correcting, ensuring reliability with minimal oversight. This may include autonomous learning, in addition 

to inference.

4. Innovating AI: Known as “innovators”, these systems go beyond executing tasks – they improve them. 

Instead of just following rules, they critically analyse processes to enhance efficiency and effectiveness.

5. Organisational AI (super AI): At the final stage, AI functions as an entire organisation, managing all 

roles, optimising processes and collaborating autonomously – without human involvement.

He predicts we could reach level five within 10 years (see Figure 3.1), while others estimate it may take up to 50 

years. The exact timeline remains uncertain, but the rapid pace of AI advancement is undeniable.

10  https://www.gartner.com/en/information-technology/glossary/artificial-general-intelligence-agi

11  https://www.forbes.com/sites/jodiecook/2024/07/16/openais-5-levels-of-super-ai-agi-to-outperform-human-capability

https://www.gartner.com/en/information-technology/glossary/artificial-general-intelligence-agi
https://www.forbes.com/sites/jodiecook/2024/07/16/openais-5-levels-of-super-ai-agi-to-outperform-human-capability/
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Figure 3.1: Timeline with evolving AI trends with implications on Edge AI

GenAI will inevitably have a significant impact on Edge AI that will bring real-time decision-making capabilities 

to resource-constrained devices such as IoT, sensors and smartphones. It will push advances in hardware 

optimisation and lightweight AI models to reshape edge computing paradigms. The rapid progress of GenAI 

presents both challenges and opportunities for the semiconductor research and innovation community, requiring 

a strategic reassessment of its R&I trajectory.
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4	 Overview of New Hardware Architectures
Deep Neural Network (DNN) algorithms achieve high-performance results for various applications – autonomous 

driving, smart health, smart home, smart agriculture, etc. However, these algorithms require high computational 

power for both training and inference. The field of high-performance DNN accelerators has been largely domi-

nated by cloud platforms using NVIDIA GPUs and Google tensor processing units (TPUs), and the general trend 

has been to provide flexibility and performance to serve a wide range of DNN applications – without much con-

cern for power consumption.

In contrast to monolithic accelerators such as the Google TPU, GPUs are modular by design and hence can scale 

from high-performance computing systems to edge devices. For example, NVIDIA’s Ampere microarchitecture 

powers big A100 cores in data centres but also the Jetson Orin chips. A similar approach is taken by AMD, whose 

AI Engine Architecture is a scalable array of vector processors that accelerates AI inference workloads in laptop 

chips, 5G/6G communication infrastructure, as well as automotive edge devices. The advantage of edge and 

smart sensor AI solutions is the use of inference accelerators for tiny neural network models that offer low 

power, high throughput and low latency, opening up the possibility of moving processing closer to the sensor 

and sensor nodes.

4.1	 SNN-based accelerators

Spiking Neural Networks (SNNs) represent an evolution in artificial neural networks (ANNs) incorporating princi-

ples inspired by the workings of biological brains. Unlike ANNs, which process data continuously, SNNs utilise dis-

crete spikes as communication signals, introducing a time dimension to neuron activity. This makes SNNs uniquely 

capable of modelling the temporal dynamics of biological neurons, such as the timing of spikes and inter-neuro-

nal dependencies. By leveraging event-driven computation, SNNs achieve remarkable energy efficiency, particu-

larly when implemented on specialised neuromorphic hardware like Intel’s Loihi or IBM’s TrueNorth.

In neuromorphic hardware, their efficient computation paradigms make them ideal for low power environments 

such as edge devices. In robotics and sensory processing, their capacity for real-time, temporal pattern recogni-

tion allows for advanced control systems and adaptive behaviours. There are also applications in fields such as 

autonomous systems, speech recognition and time-series analysis, where SNNs can naturally encode and process 

sequential data. Despite their flexibility, SNNs adoption presents challenges such as the complexity of training 

methods, the need for specialised hardware, and difficulties in analysing their temporal activity patterns. Train-

ing SNNs is currently a complex task, often relying on approximations or hybrid approaches involving traditional 

neural networks.

SNNs require specialised hardware to fully realise their potential, as general-purpose GPUs or CPUs struggle 

with the sparse and temporal nature of spiking activity. SNN accelerators are designed to efficiently handle SNN 

highly parallel event-driven operations and temporal characteristics, with the advantage of energy efficiency and 

low-latency computation. Chips like Intel’s Loihi and IBM’s TrueNorth have set benchmarks in this field by inte-

grating programmable synaptic plasticity, on-chip learning, and support for large-scale spiking networks. Intel’s 

Loihi, for example, has pioneered the inclusion of biologically inspired learning rules such as Spike-Timing-De-

pendent Plasticity (STDP), enabling real-time adaptability. Similarly, IBM’s TrueNorth chip offers ultra-low power 

operation with its million-neuron architecture, demonstrating the scalability of neuromorphic systems.

Recent advances in neuromorphic hardware have focused on enhancing scalability, enabling chips to support 

larger and more complex networks – for example, with the adoption of improved memory architectures and 
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3D-stacked designs to overcome data bandwidth limitations[12] [13]. This also reduces latency and enables real-time 

processing of high-dimensional data[14] [15].

Energy efficiency remains a primary objective as temporal sparsity and event-driven computation minimises 

unnecessary activity, significantly reducing power consumption. For Edge AI devices and advanced memory 

technologies such as memristors and resistive RAM (ReRAM), this represents a promising evolution. Moreover, 

the combination of SNN accelerators with energy-harvesting technologies could contribute to the diffusion 

of energy-autonomous systems, enabling devices to operate indefinitely in remote or resource-constrained 

environments; in IoT applications, this could represent a game changer.

Another trend is the integration of SNNs with traditional deep learning frameworks, creating hybrid architectures 

that combine the strengths of both paradigms: these systems can switch between continuous and event-driven 

computation, optimising workloads dynamically for a wide range of applications.

The next generation of SNN accelerators will require novel materials, enhancing computational density, such as 

phase-change memory and memristors, to replicate synaptic functions with greater efficiency. They will allow 

the simulation of more biologically accurate neural dynamics, while a futuristic evolution could involve the fusion 

of quantum computing with neuromorphic principles. Such quantum systems, with their inherent parallelism 

and superposition capabilities, offer a new dimension for processing spike-based computations. Hybrid quan-

tum-SNN architectures could also accelerate learning and inference processes, tackling optimisation problems 

that are currently infeasible with classical systems[16].

From an architectural perspective, SNN accelerators will include cognitive-level processing, enabling chips to 

perform higher-order tasks such as reasoning, abstraction and multi-task learning. By incorporating hierarchical 

and modular architectures, these systems will approximate the layered complexity of biological brains, making 

them suitable for applications in AGI.

4.2	 RISC-V based accelerators

RISC-V is very frequently adopted to develop Edge AI accelerators due to their flexibility and modularity, which 

enables the customisation of processors tailored to specific workloads and applications. Current RISC-V based 

accelerators are characterised by their ability to balance performance and power efficiency, crucial for Edge AI 

systems operating in resource-constrained environments – such as IoT devices, autonomous sensors and robotics. 

For example, the integration of domain-specific extensions within RISC-V cores, enabling accelerators to handle 

specialised tasks such as matrix multiplications, Convolutional Neural Network (CNN) inference, and vectorised 

computations, have been adopted to develop lightweight accelerators with a reduced energy consumption 

profile while maintaining high throughput in machine-learning tasks. A practical implementation is the Parallel 

Ultra-Low Power (PULP) platform, which builds on RISC-V cores to deliver ultra-low power AI solutions. The PULP 

project emphasises fine-grained parallelism and energy-efficient computation, leveraging custom extensions for 

machine-learning inference, to enable efficient data movement and computation, key factors for Edge AI tasks.

12   Indiveri, G., & Liu, S. C. (2015). “Memory and information processing in neuromorphic systems.”  
Proceedings of the IEEE, 103(8), 1379–1397.

13   Prezioso, M. et al. (2015). “Training and operation of an integrated neuromorphic network based on metal-oxide memristors.”  
Nature, 521(7550), 61–64.

14    BrainChip. (2022). “Akida: Neuromorphic Processing at the Edge.” [white paper].

15    Zidan, M. A. et al. (2018). “The future of electronics based on memristive systems.” Nature Electronics, 1(1), 22–29.

16    Marković, D. et al. (2020). “Physics for neuromorphic computing.” Nature Reviews Physics, 2(9), 499–510.
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A different approach adopts vectorised processing units in RISC-V accelerators to process multiple data elements 

simultaneously, significantly improving the performance of neural network operations. For example, the RISC-V 

Vector Extension (RVV) standard enables scalable vector processing, making it particularly effective for handling 

the parallel nature of deep learning algorithms.

Emerging trends emphasise the use of heterogeneous architectures, where RISC-V cores work synergistically 

with specialised AI processing units. This approach leverages the programmability of RISC-V for control tasks 

while delegating computation-heavy operations to AI-specific accelerators. Such architectures enable a more 

efficient division of computing load, reducing power consumption and latency in real-time applications.

The integration of approximate computing is another frontier for these accelerators, paving the way for acceler-

ators that strike a balance between accuracy and efficiency. By exploiting the inherent tolerance of AI algorithms 

to computational noise, approximate computing techniques reduce precision levels in arithmetic operations, 

thereby enhancing energy efficiency.

Moreover, the combination of RISC-V with emerging memory technologies like ReRAM and 3D-stacked memory 

is anticipated to address the memory bottleneck in AI workloads. These technologies enable faster and more 

energy-efficient data access, which is critical for large-scale AI models at the edge. Future accelerators may inte-

grate these memory systems with RISC-V cores to enhance the processing of data-intensive tasks.

Another promising direction involves the use of RISC-V in neuromorphic computing, where accelerators are 

designed to emulate biological neural networks. By leveraging RISC-V’s modularity, developers can implement 

spiking neural network accelerators that combine biological plausibility with energy efficiency.

4.3	 Photonic/optical-based accelerators

Photonics and optical technologies offer an alternative for high-speed and efficient AI tasks. These technologies 

exploit the unique properties of light, such as high bandwidth, low latency and minimal energy dissipation, to 

perform computations that would be prohibitively slow or power-intensive on conventional electronic hardware. 

As Edge AI applications demand compact, energy-efficient systems capable of processing massive data streams 

in real time, photonics-based accelerators are emerging as a promising solution.

At the forefront of this field are photonic neural networks, which leverage optical components such as wave-

guides, modulators and resonators to execute AI workloads, drastically reducing latency and power consumption. 

These solutions use optical interference to compute in parallel and efficiently perform matrix multiplications[17].

Silicon photonics, a mature and scalable technology, has enabled the integration of photonic accelerators into 

edge devices, combining the precision of photonics with the practicality of CMOS-compatible manufacturing, 

paving the way for cost-effective deployment. In this context, the use of optical memory, such as phase-change 

memory, allows the storage of data in light-sensitive materials, enabling ultra-fast read/write cycles. Similarly, 

optical interconnects eliminate bottlenecks associated with electronic data transfer, allowing accelerators to 

handle high-throughput tasks with minimal latency. These innovations are particularly beneficial for edge scenar-

ios involving real-time data analytics and autonomous decision-making[18].

Photonics-based AI accelerators present several challenges, specifically in the integration of optical and electron-

ic components, as hybrid systems often encounter inefficiencies at the interface. Additionally, scaling photonic ar-

chitectures for more complex neural networks requires innovations in device miniaturisation and photonic circuit 

design. Co-packaged photonic processors, where optical and electronic components share a common substrate, 

17    Shen, Y., et al. (2017). “Deep learning with coherent nanophotonic circuits.” Nature Photonics, 11(7), 441–446.

18    Feldmann, J., et al. (2021). “Parallel convolutional processing using an integrated photonic tensor core.” Nature, 589(7840), 52–58.
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will eliminate inefficiencies at the interface, enabling seamless communication between light and electrons. This 

will be crucial for scaling photonic accelerators to support large, complex neural networks in edge devices.

Beyond these advances, the future of photonic accelerators could lie in the use of novel materials such as two-di-

mensional semiconductors and meta-surfaces to enhance the efficiency and scalability of photonic devices. 

These materials allow for more compact, denser (nanoscale precision) and energy-efficient photonic circuits, 

making them suitable for deployment in constrained edge environments.

Quantum photonics is another transformative direction, as it offers the potential to harness quantum phenome-

na such as superposition and entanglement for AI computations. Hybrid quantum-photonic systems could drasti-

cally enhance the parallelism and speed of AI accelerators, particularly for tasks such as optimisation and pattern 

recognition.

Merging neuromorphic and photonics could also be an alternative, with photonic implementations in SNNs, which 

could enhance tasks requiring temporal data processing, such as speech recognition and autonomous navigation.

4.4	 Biological processors

Biological processors and organoids represent an emerging frontier in AI hardware, where biological systems 

are employed to perform computation. This paradigm diverges significantly from traditional silicon-based pro-

cessors, leveraging the unique properties of biological materials, such as adaptability, energy efficiency and 

self-organisation. As Edge AI demands compact and efficient systems capable of real-time processing, biological 

processors and organoids present promising solutions by mimicking the unparalleled computational capabilities 

of biological brains.

Biological processors, particularly those based on synthetic biology and engineered genetic circuits, use living 

cells or biomolecules to process inputs and generate outputs. For example, bacterial cells can be programmed 

to function as logic gates, responding to chemical signals with specific outputs. These systems demonstrate the 

potential for massive parallelism, as billions of cells can work simultaneously to process complex datasets. Recent 

advances[19] highlight the development of molecular logic circuits capable of performing computations similar to 

traditional electronics, but with far lower energy requirements.

Organoids, three-dimensional cellular structures that mimic the architecture and functionality of the brain, rep-

resents another alternative for neuromorphic computation. Brain organoids, in particular, are cultivated from 

stem cells to replicate certain aspects of neural processing. Recent research has demonstrated the ability of 

brain organoids to exhibit spontaneous electrical activity, resembling primitive forms of neural computation. 

Organoids hold potential for Edge AI, as they can perform real-time processing in a biologically realistic manner, 

with minimal energy consumption.

While these technologies are still in their infancy, their unique features make them well-suited for Edge AI appli-

cations, especially as biological processors excel in energy efficiency and adaptability, qualities critical for remote 

or autonomous systems. Organoids, on the other hand, offer unparalleled parallelism and plasticity, enabling 

them to learn and adapt to new data, much like biological brains.

Despite these advantages, challenges remain. Biological systems are inherently less predictable than electronic 

circuits, and their integration with existing AI infrastructures poses significant hurdles. Additionally, scaling these 

technologies for practical applications requires breakthroughs in bioengineering and computational frameworks.

One promising direction is the development of hybrid bioelectronic systems, where biological components 

interface seamlessly with traditional electronics. Advances in bioelectronic interfaces are enabling real-time 

19    Qian, L., et al. (2011). “Neural network computation with DNA strand displacement cascades.” Nature, 475(7356), 368–372.
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communication between living cells and silicon-based processors. This hybrid approach combines the adaptability 

of biological systems with the precision and scalability of electronics, creating versatile platforms for Edge AI.

Organoids are also being adopted in neuromorphic computing, as by cultivating larger and more complex brain 

organoids researchers aim to replicate higher-order cognitive functions such as decision-making and pattern 

recognition. Recently, organoids have been trained to control robotic systems, suggesting their potential for 

real-time autonomous operations at the edge.

Furthermore, synthetic biology is driving innovations in the programmability of biological processors. Techniques 

such as CRISPR-Cas9 gene editing are enabling the design of genetic circuits with greater complexity and spec-

ificity. With this technology, engineered bacterial systems have been able to process spatial and temporal data, 

opening new possibilities for applications in environmental monitoring and healthcare.

4.5	 Chiplets

Chiplets are small integrated circuit (IC) die that are designed to work together within a single package to form 

a complete system. Instead of having one large, monolithic die, a system is split into multiple smaller die, or chip-

lets, each performing specific functions. These chiplets are interconnected using advanced packaging technolo-

gies to create a cohesive system-on-a-chip (SoC).

This technology promises enhanced performance, flexibility, scalability and power efficiency, as well as improved 

yield and cost-reduction due to the modularity it enables for SoCs. This modularity enables the reuse of chiplets 

and their optimisation for specific tasks. All these advantages make chiplets an interesting approach for many 

markets such as IoT devices or automotive applications.

Naturally, they are also applicable to Edge AI aspects of these areas. However, before chiplets can find wide-

spread adoption, challenges such as standardisation, power distribution management and the linking of differ-

ent chiplets need to be resolved. To tackle these issues, groups such the ASRA group in Japan and the IMEC 

automotive chiplet program in Europe were formed.

4.6	 In-memory computing (memristive technologies)

In-memory computing integrates computation and data storage within the same physical components, signifi-

cantly reducing the need to transfer data between separate processors and memory units. Memristive technol-

ogies – including spin-orbit torque MRAM (SOT-MRAM), phase-change RAM (PCRAM) and oxide-based resistive 

RAM (OxRAM) – enable memory cells to perform logic or analogue computations directly. By substantially re-

ducing data movement, in-memory computing greatly enhances the speed and energy efficiency of AI inference. 

Traditional deep learning hardware often spends more time and energy moving data (weights and activations) 

between off-chip dynamic random-access memory (DRAM), on-chip static random-access memory (SRAM), and 

computational units than executing arithmetic operations[20].

Emerging technologies such as SOT-MRAM, PCRAM and OxRAM integrate memory and processing functions, 

significantly reducing data transfer latency. By minimising bottlenecks between the CPU and memory, these 

architectures boost inference speed – an essential advantage for real-time AI applications. Their low-latency per-

formance makes them especially well-suited for Edge AI, where fast on-device processing is critical.

20  https://semiengineering.com/increasing-ai-energy-efficiency-with-compute-in-memory

https://semiengineering.com/increasing-ai-energy-efficiency-with-compute-in-memory
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4.7	 ASICs, SoCs and microcontrollers

Application-specific integrated circuits (ASICs) and AI-centric SoCs are custom-engineered to deliver highly 

efficient deep learning inference. Unlike general-purpose CPUs or GPUs, which are designed for a wide range 

of tasks, these chips incorporate specialised circuits such as tensor engines and neural processing units, 

components that are finely tuned for the types of matrix operations and neural network computations that 

underpin modern AI models.

The result of this specialisation is a significant boost in both performance and energy efficiency. ASICs and SoCs 

can achieve extremely high throughput – often measured in trillions of operations per second (TOPS) – while 

maintaining a low power footprint. For instance, a neural processing unit embedded in a smartphone can per-

form several TOPS of inference while consuming only a few hundred milliwatts of power, a level of efficiency 

that conventional CPUs or GPUs cannot sustain. However, this high level of optimisation comes with a trade-off: 

these chips are typically limited in flexibility, and are best suited for specific tasks rather than general-purpose 

computing.

In many AI systems, particularly those operating at the edge, microcontrollers (MCUs) are integrated alongside 

ASICs or within SoCs to handle tasks that require low power and real-time responsiveness. While MCUs lack the 

processing muscle for intensive inference, they are essential for coordinating sensor input, triggering inference 

operations, and managing communication between different components of the system. In certain ultra-low 

power scenarios, such as TinyML applications, even simple neural networks can be deployed directly on microcon-

trollers, enabling basic AI functionality directly on the device without relying on cloud resources.

As AI continues to expand into embedded and autonomous systems, ASICs and SoCs are becoming increasingly 

vital. Their ability to deliver high-performance, low-latency inference makes them well-suited for demanding 

applications such as voice recognition, computer vision, autonomous vehicles and industrial automation.

4.8	 FPGAs

Field programmable gate arrays (FPGAs) provide a unique and powerful platform for accelerating AI models by 

offering reconfigurable hardware fabrics that enable massive parallelism. At their core, FPGAs consist of an array 

of configurable logic blocks interconnected in a way that allows designers to create custom datapaths and com-

putational units. This flexibility is particularly valuable for AI workloads, where operations such as multiply-accu-

mulates, adders and control logic can be spatially mapped and optimised to match the structure of a given neural 

network.

Unlike ASICs, which are fixed-function chips tailored for specific tasks, FPGAs can be reprogrammed to support 

new or evolving model architectures. This reconfigurability makes them ideal for AI applications that require fre-

quent updates or experimentation, such as in Edge AI deployments or during the prototyping phase of develop-

ment. Engineers can fine-tune hardware characteristics – including dataflows, memory hierarchies and bit-widths 

– to match the demands of each model, thereby enhancing both performance and efficiency.

One of the key strengths of FPGAs lies in their ability to adapt to a wide range of AI models while maintaining 

moderate power consumption. Their architecture supports extremely low-precision computing, with some 

designs utilising quantisation down to just one or two bits. This not only accelerates computation but also 

drastically reduces power usage – an essential advantage for power-sensitive environments.

As the landscape of AI continues to evolve rapidly, FPGAs offer the agility and customisation required to stay 

aligned with the latest advances, making them a compelling choice for developers building cutting-edge 

adaptive AI solutions.
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4.9	 ECHO gateway for AI processing

A standardised, automated interface framework enabling seamless chip-to-cloud (such as machine-to-machine) 

communication is essential. Automated access from Edge CHip to clOud (ECHO) should enable fast AI processing 

on the cloud without any access to external world to offer trustworthiness, and ensure privacy and secured AI 

processing.

Bridging the gap between edge devices and cloud infrastructure at the hardware level minimises the fragmenta-

tion of operating systems and communication protocols, as highlighted by a CEUR-WS paper[21]. To maintain a se-

cure data flow from edge to cloud, direct hardware-level access within cloud platforms – such as AWS, IONOS and 

Azure – must be enabled via secure application programming interfaces (APIs), independent of application-specif-

ic knowledge. For futuristic multi-core edge processors, message queuing telemetry transport (MQTT) and con-

strained application protocol (CoAP) are not efficient when there is a hardware-based API communication as then 

channels are scalable, and it enables a priority-based channel for uplink and downlink (also easy to port on 5/6G).

To mitigate potential security threats, the system must implement end-to-end encryption, strong authentication 

mechanisms, zero trust, a time stamp, and enforce consistent security policies across the entire datapath – from 

edge devices to cloud infrastructure. This architecture ensures that no intermediate software layer can access or 

tamper with the data during transfer, enabling secure AI training and inference in the cloud.

To address the different application needs, the cloud can offer improved scalability and hardware-level flexibility 

to accommodate a wide range of application requirements, facilitating seamless ECHO integration[22].

A key benefit of this hardware-centric gateway approach is reduced latency and faster AI model training. It also 

supports in-memory computing and facilitates the integration of deep neural networks directly within data pipe-

lines, enabling AI processing closer to the source without overloading higher-tier AI accelerators[23].

Ultimately, this architecture reduces dependency on software configuration, minimises manual handovers, and 

simplifies secure cloud access – paving the way for highly efficient and secure AI-driven systems.

21    Stanko, A. et al. (2024). “Artificial intelligence of things (AIoT): Integration challenges, and security issues”  
(https://ceur-ws.org/Vol-3842/paper6.pdf).

22    See PwC, (2024) “2024 cloud and AI business survey.”  
(https://www.pwc.com/us/en/tech-effect/cloud/cloud-ai-business-survey.html).

23    Jhang et al. (2021) ”Challenges and trends of SRAM-based computing-in-memory for AI edge devices.” 
 IEEE Transactions on Circuits and Systems. 68(5). 1773–1786  
(https://ieeexplore.ieee.org/document/9382915).

https://ceur-ws.org/Vol-3842/paper6.pdf
https://www.pwc.com/us/en/tech-effect/cloud/cloud-ai-business-survey.html
https://ieeexplore.ieee.org/document/9382915
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4.10	Conclusion

There is much evidence of a shifting paradigm toward Edge AI. Traditional DNNs dominate high-performance 

cloud-based applications but face scalability issues at the edge due to high power and computing demands. 

There is a growing need for energy-efficient, real-time AI solutions closer to data sources, which is fuelling inno-

vation in edge-focused hardware.

Figure 4.1: Timeline for the emerging hardware architectures

SNNs, inspired by biological neurons, offer ultra-low-power and real-time processing, particularly suitable for 

robotics, time-series data and sensory applications. Neuromorphic chips such as Intel’s Loihi and IBM’s TrueNorth 

showcase the potential of on-chip learning and energy efficiency. However, challenges remain in training com-

plexity and hardware specialisation.

RISC-V’s modularity makes it ideal for customising AI accelerators for edge devices. Platforms like PULP and vec-

tor extensions (RVV) enable efficient processing of ML workloads. The integration of heterogeneous computing 

and approximate computing further enhances power efficiency and performance in constrained environments.

Optical computing offers significant advantages in speed, parallelism and energy efficiency. Photonic neural net-

works and silicon photonics reduce latency and power usage, making them well-suited for high-throughput edge 

applications. Future advances will rely on hybrid photonic–electronic systems, new materials, and potentially 

quantum photonics for extreme acceleration.

Chiplets enable flexible, scalable, and cost-effective AI hardware by modularising specific functions within a chip 

package. Their reuse and task-specific optimisation make them ideal for Edge AI in domains including IoT and au-

tomotive. Widespread adoption depends on overcoming standardisation and integration challenges.

now	 in 3–5 years	  in 5–10 years	      timeline

Chiplets

RISC-V

ASICs and 
AI-centric SoCs

Spiking Neural 
Networks (SNNs) Edge Chip-to-cloud

In-memory
computing Quantum Photonics

Spintronics Optical 
computing

Bio-inspired 
Electronics



A joint European Roadmap for Edge AI ARTIFICIAL INTELLIGENCE AT THE EDGE

21

Although they are still experimental, biological computing systems (eg, brain organoids and synthetic bio-pro-

cessors) show promise for ultra-energy-efficient, adaptive AI at the edge. Hybrid bioelectronic interfaces are also 

emerging, with the aim of combining biological adaptability with electronic control for the next-generation of 

intelligent systems[24].

In-memory computing technologies (eg, SOT-MRAM, PCRAM, OxRAM) drastically reduce data movement, en-

hancing speed and power efficiency. This is particularly important for edge devices that require fast, local AI 

inference. These architectures address memory bottlenecks and support real-time AI processing.

ASICs and AI-centric SoCs are highly specialised for deep learning inference, offering maximum performance and 

energy efficiency for specific tasks. In contrast, FPGAs provide a reconfigurable platform that trades some effi-

ciency for flexibility, making them ideal for evolving or frequently changing AI models. The choice between them 

reflects a trade-off between performance optimisation and hardware adaptability.

The ECHO architecture provides a highly efficient and secure foundation for next-generation AI systems. It sim-

plifies cloud access, minimises manual configuration, and delivers the flexibility and scalability needed to accom-

modate diverse application requirements – ultimately setting a new standard for secure, hardware-level chip-to-

cloud integration.

24    Boufidis, D. et al. (2025) “Bio-inspired electronics: Soft, biohybrid, and ‘living’ neural interfaces.”  
Nature Communications. 16 (https://www.nature.com/articles/s41467-025-57016-0).

https://www.nature.com/articles/s41467-025-57016-0
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5	 Challenges, Constraints and Limitations Drive 
Innovation in Hardware Solutions for Edge AI

As Edge AI continues to evolve, it brings with it a unique set of challenges, constraints and limitations that de-

mand a fresh wave of innovation in hardware design. This chapter explores the pressing technical, environmental, 

computational and specific AI model-related hurdles that require innovation in Edge AI hardware solutions.

5.1	 Edge device constraints

Deploying AI algorithms on edge devices presents several constraints that must be carefully managed to ensure 

optimal performance.

	� Processing power and speed: AI algorithms require substantial computational resources to execute within 

acceptable timeframes. Edge devices often have limited processing capabilities, making it challenging to 

run complex models efficiently. Specialised hardware accelerators, such as neural processing units (NPUs), 

can enhance performance by offloading AI-specific tasks from general-purpose CPUs.

	� Available memory: Sufficient onboard memory is essential for temporarily storing and retrieving data 

during AI model execution. The size and speed of this memory directly impacts processing speed, energy 

consumption and overall efficiency. Techniques such as model quantisation and pruning can reduce 

memory requirements, enabling the deployment of AI models on devices with constrained resources. 

AI models must be stored on the device, and storage limitations can restrict the complexity and size of 

deployable models. Efficient model compression methods are crucial to fit models within the storage 

constraints of edge devices without significantly compromising performance.

	� Energy consumption: Processing and data movement in AI tasks consume power, and larger models typically 

lead to higher energy consumption, reducing device autonomy. Energy-efficient model architectures and 

hardware accelerators can mitigate this issue by optimising power usage during inference.

	� Processing support: Traditional processors (CPUs or microcontrollers) often complement AI accelerators 

in edge devices, handling tasks that are not well-suited for specialised hardware. However, this 

collaboration can further reduce device autonomy due to increased energy consumption. Balancing the 

workload between general-purpose and specialised processors is essential to maintain efficiency.

	� Connectivity: Edge nodes are typically connected to external resources, typically to send sensory 

data or receive commands, and to interact with cloud resources. However, they suffer from unreliable 

connectivity, and can also be unable to deliver the data rates and latency required by the application. 

Introducing connectivity management and local AI capabilities (in particular with distributed or split AI 

approaches) significantly increases the robustness and performance of the deployed application.

	� Hardware deterioration: Edge devices are exposed to a much wider range of sources of hardware 

deterioration (including different kinds of weather) than processing hardware in cloud servers. 

The deterioration of the underlying hardware leads to a reduction in the performance of AI models 

deployed on edge devices. Hence, it is essential that Edge AI models are robust and flexible, and that 

edge application systems include mechanisms for performance monitoring and updates to deal with the 

deterioration, which will increase the lifetime and sustainability of AI-based edge products.

	� Security and safety: Edge devices are often much easier to access than a cloud server. This makes them 

vulnerable to wider range of attacks, especially physical ones. Hence, AI models that are used for safety-

critical processes need to be deployed on certified edge hardware with security and safety components 

and mechanisms.
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	� Device resource sharing: The adoption of multiple AI models of the same device generally involves 

the concurrent use of its limited recourses, reducing their availability and negatively impacting on 

performances.

Addressing these constraints requires a holistic approach, combining hardware advancements with software 

optimisation techniques to enable effective AI deployment on edge devices.

5.2	 Edge model and application constraints

Software–hardware co-design is essential for Edge AI, tightly integrating hardware capabilities with software 

demands to optimise efficiency, performance and power usage – critical aspects for edge applications. Edge 

devices typically face stringent power constraints; co-design ensures software algorithms leverage hardware 

strengths to significantly reduce energy consumption. By tailoring hardware acceleration specifically to AI 

models, co-design enables faster, responsive and real-time processing.

Aligning software requirements with hardware execution minimises data movement and latency, which is crucial 

for real-time performance. Additionally, this approach supports adaptable and future-proof hardware architec-

tures that can evolve alongside emerging software techniques and increasing AI model complexity. Ultimately, 

software–hardware co-design effectively bridges algorithm innovation and hardware functionality, creating effi-

cient, powerful and responsive Edge AI solutions.

Optimising AI models and applications for edge devices involves addressing several key constraints.

	� Model size: Large models demand more computational power and memory, which can lead to slower 

operations on resource-limited edge devices. Techniques such as model pruning and quantisation can 

reduce model size, enhancing performance without significantly compromising accuracy.

	� Model accuracy and precision: The level of precision used in data representation affects hardware 

resource requirements, and consequently the performance and accuracy of AI models. Balancing 

precision and resource utilisation is crucial for efficient edge deployment.

	� Model architecture: The design and parameter interconnections within a neural network influence 

computational efficiency, memory usage and processing speed. Selecting architectures optimised for 

edge environments is essential for effective deployment.

	� Model training and inference: In the context of Edge AI, it is important to differentiate between training 

and inference (deployment). Typically, AI models undergo resource-intensive training processes in cloud 

environments, where substantial computational resources are available. Once trained, these optimised 

models are deployed to edge devices, where inference occurs. This separation ensures computationally 

demanding training tasks do not burden resource-constrained edge hardware, while still enabling efficient, 

real-time, on-device AI. Training models directly on low-power devices is still a cutting-edge area, one that 

comes with a host of challenges – both technical and practical; however, with breakthroughs in software 

and data-centric strategies, federated learning and hardware, it is becoming more feasible.

	� Application speed requirements: Edge devices may struggle to meet the speed demands of applications 

due to resource constraints, affecting their ability to ingest data and perform inference in a timely manner. 

Optimising both hardware and software is necessary to achieve the required performance levels.
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	� Data volume versus resource availability: Handling large datasets or high-resolution inputs can quickly 

exceed the available resources of edge devices, hindering application performance. Implementing data 

compression and efficient data-handling strategies can mitigate this issue. However, edge devices may 

have limited or intermittent access to labelled data (essential for supervised training), and this has led to 

new strategies such as federated learning, self-supervised learning, and active learning techniques.

	� Raw data preprocessing: Preprocessing raw data before feeding it into AI models often requires 

substantial computing and memory resources. Efficient preprocessing pipelines are necessary to manage 

resource consumption effectively.

	� Robustness: Unforeseen events and hardware deterioration can arise in all application contexts. At the 

same time, retraining and updates are more difficult at the edge due to the limited resources. Hence, Edge 

AI models need to be made robust to deal with these issues to a degree.

Addressing these constraints requires a comprehensive approach, one that combines model optimisation 

techniques with efficient data handling and hardware considerations to ensure effective AI deployment on 

edge devices.

5.3	 Environmental, operating and financial constraints

Deploying edge devices involves navigating a range of environmental, operational and financial constraints.

	� Device form factor: Edge devices must adhere to specific size and weight limitations, which can be 

challenging due to the need for components such as cooling systems, interfaces and batteries. Balancing 

these requirements is essential to meet form factor constraints.

	� Environmental considerations: Edge devices often operate in harsh conditions, such as extreme 

temperatures, humidity, dust, or radiation. Ensuring high reliability in these environments may necessitate 

specialised hardware, which can be less performant and more costly.

	� Safety and security: In safety-critical applications, hardware redundancy is typically necessary to enhance 

reliability, although it can increase costs and introduce additional design constraints. Additionally, securing 

data communication is essential when deploying Edge AI applications in public or remote environments to 

protect against potential vulnerabilities and ensure privacy.

	� Accessibility: Accessing edge devices can be difficult, especially in remote or hard-to-reach locations, 

making maintenance and updates challenging and expensive.

	� Deployment and commissioning: The process of deploying and commissioning edge devices is often 

complex and costly, particularly when dealing with large-scale or geographically dispersed installations.

	� Maintenance and evolution: The ongoing operation, management, updates, maintenance, replacement 

and eventual decommissioning of edge devices represents a significant cost over the device lifecycle. 

Ensuring that AI model updates have been correctly implemented and are working as intended is critical. 

Techniques such as runtime behaviour analysis and provenance tracking can be used to verify model 

integrity.

	� Standards for protocols and interfaces: Due to the diverse nature of edge devices – ranging from small 

IoT sensors to complex autonomous systems – establishing standards, protocols and interfaces becomes 

crucial. Standards and protocols ensure interoperability between various hardware and software 

components, facilitating seamless integration, scalability and communication across different platforms. 

Well-defined interfaces enable efficient data exchange, software reuse and simplified development, 

ultimately reducing complexity and cost.
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Addressing these constraints requires careful planning and consideration of trade-offs to ensure that edge 

deployments are both effective and sustainable.

5.4	 Safety, security and privacy technologies

Edge AI refers to deploying AI algorithms directly at the point of data processing and decision-making, such as 

an IoT device or an integrated module in a modern car (eg, a pedestrian detector for collision warnings). While 

research has focused on making AI training more robust, reliable and secure by reducing reliance on third-party 

cloud services, Edge AI introduces unique challenges.

For instance, in the case of a connected car fleet, model retraining may be necessary to enhance performance. 

Since on-device training is typically impractical, collected data must be transferred to a powerful server. Once 

retrained, updated models must then be deployed back to edge devices. This shift from traditional AI pipelines 

raises key safety and security concerns, including the following.

	� Functional safety: How can we ensure that IoT devices operate correctly, addressing hardware issues (eg, 

bit flips, loose cables) and maintaining software integrity?

	� Physical intrusion: How can we prevent tampering that could compromise device stability or expose it to 

external threats?

	� Security: How can we protect on-device data – whether gathered, processed or stored – from unauthorised 

access?

	� Transmission integrity: How can we guarantee the security and integrity of training data sent to servers 

and new models deployed back to devices?

Addressing these concerns is crucial for building secure, reliable, and efficient Edge AI systems that can operate 

independently while ensuring data privacy and system stability.

5.5	 Technology challenges for computation

Advances in computing performance have historically relied on transistor miniaturisation and architectural im-

provements. However, as we approach the physical limits of transistor scaling, alternative strategies are essential 

to overcome emerging challenges such as the memory wall and energy inefficiency.

The continuous shrinking of transistors faces significant obstacles.

	� Thermodynamic constraints: As transistors approach atomic scales, quantum effects like electron 

tunnelling become prominent, hindering further miniaturisation.

	� Manufacturing challenges: Photolithography faces challenges at nanometre scales, making advanced 

chip production more complex. Another key issue is identifying the optimal combination of technologies 

for the diverse functions in an Edge AI component. In this context, chiplets offer a promising solution.
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To address these limitations, several approaches are under exploration.

	� 3D integration and heterogeneous architectures: Stacking chips vertically and integrating diverse 

components can enhance performance and mitigate space constraints.

	� Specialised hardware: Developing ASICs tailored for particular tasks can offer efficiency gains over 

general-purpose processors.

	� Alternative technologies: Exploring new materials and devices, such as memristors and integrated 

photonics, holds promise for surpassing current transistor limitations.

5.6	 Memory wall challenge

A significant portion of processing time is consumed by data transfer between memory and processors, leading 

to inefficiencies.

	� Data transfer bottlenecks: In large-scale AI models, substantial time is spent moving data, which doesn’t 

scale efficiently with increased processing power. Ensuring that AI models run efficiently across diverse 

hardware environment – from IoT devices to smartphones – adds complexity. Variations in hardware 

capabilities necessitate tailored optimisation strategies to maintain performance[25].

To overcome the memory wall, strategies such as implementing memory hierarchies are key. For this, the follow-

ing approaches may be useful.

	� Compute-in-memory (CIM) architectures: Integrating processing capabilities within memory units 

reduces data movement, enhancing speed and energy efficiency.

	� 3D memory technologies: Expanding memory bandwidth through vertical stacking can alleviate data 

transfer limitations.

5.7	 Energy efficiency

Energy efficiency has become a critical concern in the computing industry due to the significant environmental 

and economic challenges posed by the escalating power consumption of data centres and high-performance 

computing systems. The growing energy demands of advanced computing systems pose sustainability challenges.

	� High power consumption: Traditional architectures consume substantial energy, leading to increased 

operational costs and environmental impact.

	� Specialised low-power hardware: Designing chips optimised for specific tasks can significantly reduce 

energy consumption.

	� Algorithmic optimisation: Developing more efficient algorithms can decrease computational load and 

associated energy use.

25  https://www.wevolver.com/article/challenges-and-opportunities-in-edge-based-generative-ai

https://www.wevolver.com/article/challenges-and-opportunities-in-edge-based-generative-ai
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5.8	 Modularity and interoperability of the technology stack

In the rapidly evolving computing landscape, hyperscalers – large-scale cloud service providers – recognise that 

mere hardware advancements are insufficient to meet escalating application demands. Their distinctive advan-

tage lies in a holistic approach known as “verticalisation”, emphasising comprehensive control over the entire 

technology stack. This strategy integrates hardware design, alternative materials and optimised algorithms to 

sustain progress in computing performance. By managing both hardware and software components, hyperscal-

ers can tailor solutions that enhance efficiency, scalability and innovation, setting them apart in the competitive 

cloud services market[26].

This strategy is rooted in “system thinking”, and involves the following.

	� Iterative co-design and co-optimisation: By continuously refining and aligning system requirements 

down to the hardware level, and spanning all layers of the technology stack, hyperscalers ensure that 

each component is optimised in harmony with the others. This process, often referred to as system 

technology co-optimisation (STCO), enables architectural and technology trade-offs early in the system 

design process to achieve high-performance, cost-effective solutions in a reduced timeframe.

	� Multidisciplinary collaboration: Leveraging expertise across diverse fields allows for innovative 

solutions that address complex challenges, ensuring that the final product meets client needs effectively. 

This holistic co-design approach tends to break the barrier across the vertical layers (devices, circuits, 

architecture and systems, algorithms, and applications), and therefore achieve global optimisation.

By embracing this vertically integrated methodology, hyperscalers can deliver cloud solutions that not only meet 

but often exceed client expectations, minimising the effort required to build on hardware and ensuring seamless, 

efficient performance.

5.9	 Software and data challenges in on-device training

Training machine-learning models directly on edge devices introduces a range of complex challenges that go 

far beyond hardware limitations. From a software and data perspective, the core difficulties stem from adapt-

ing conventional training paradigms – originally designed for data centre-scale environments – to extremely re-

source-constrained, heterogeneous, and often dynamic, edge environments.

One of the most fundamental training paradigms is backpropagation, which requires the storage of intermedi-

ate activations across all layers of a network. On standard servers or GPUs, this is not a problem – but on edge 

devices it is a major constraint. Efficient gradient computation thus becomes a bottleneck. Developers must rely 

on strategies such as reduced precision gradients to squeeze training processes into these limited environments; 

however, these workarounds introduce trade-offs in terms of convergence speed and numerical stability.

Another critical factor is the batch size. Modern training workflows depend on mini-batch gradient descent to 

stabilise updates and efficiently utilise vectorised operations. On the edge, the available memory usually allows 

for processing only one or a few samples at a time. This severely increases the noise in gradient estimates, slows 

convergence, and makes it harder for the model to generalise. As a result, optimisers that adapt quickly to sparse 

or noisy gradients are more suitable, although they bring their own overhead that must be managed carefully 

on-device.

26  https://www.nextplatform.com/2020/02/03/vertical-integration-is-eating-the-datacenter-part-two

https://www.nextplatform.com/2020/02/03/vertical-integration-is-eating-the-datacenter-part-two
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Another challenge is often a lack of labelled data. Edge devices typically collect vast streams of raw data – 

sensor readings, images, audio snippets – but without associated ground-truth labels. This makes traditional 

supervised learning infeasible in most real-world edge scenarios. Developers must lean on self-supervised or 

semi-supervised learning techniques, such as contrastive learning or pseudo-labelling, methods that reduce 

dependence on annotated data but require careful calibration to avoid reinforcing model bias or overfitting 

to incorrect signals.

Moreover, training on edge devices is almost always continual in nature. Rather than training once on a fixed 

dataset, the model is exposed to a constantly evolving data stream. This leads to the well-known problem of 

catastrophic forgetting, where learning new data causes the model to lose previously acquired knowledge. 

Resolving this requires implementing continual learning techniques, memory replay buffers, or regularisa-

tion-based strategies – all of which need to be implemented in lightweight and memory-efficient ways that 

are compatible with the device’s constraints.

The challenge is compounded by data drift. The input distribution seen by an edge device often changes over 

time – i.e., users behave differently and/or hardware may degrade. Unlike in the cloud, there is no centralised 

retraining pipeline or data validation loop. Models must be able to adapt locally, ideally using online learning 

or meta-learning techniques that support fast adaptation. Nevertheless, without access to large-scale met-

rics or test sets, it is difficult to even know whether the model is still performing well.

Finally, there is the issue of infrastructure. The ML software stack at the edge is fragmented and immature 

when it comes to training. Most available tools are designed strictly for inference, not training. Often, teams 

must write their own training loops from scratch, manually handling forward and backward passes, memory 

allocation, and serialisation.

Altogether, these challenges make on-device training a highly specialised area of research and development. 

While inference on the edge has become increasingly practical, training still requires a nuanced blend of 

algorithmic adaptation, software engineering and clever approximation techniques. However, as interest 

in Edge AI grows the need to solve these training bottlenecks becomes more urgent (and more rewarding).

5.10	Engineering tools for designing Edge AI-driven products

When developing AI-driven products, it is important to consider the entire technology stack to ensure seam-

less integration, optimal performance and adaptability. This comprehensive approach encompasses several 

layers, from data ingestion and processing to model training, deployment and user interfaces. By addressing 

each component, engineers can harmonise the interactions between hardware and software, resulting in 

efficient resource utilisation and improved system performance. In addition, a holistic perspective enables 

the implementation of robust security measures at every level, protecting against vulnerabilities and en-

suring data integrity. This strategy not only streamlines the development process, but also facilitates the 

creation of AI-driven products that are robust, efficient, secure, and able to meet the complex demands of 

today’s applications.

	� Integrating AI into smart system products: Developing AI-driven smart systems is an interdisciplinary 

challenge, requiring seamless collaboration between data scientists, system architects, verification 

engineers, and specialists in mechanics, electronics, semiconductors and software. Implementation 

decisions are shaped by key product requirements such as power consumption, size, thermal 

dissipation, and real-time performance, as well as economic factors like production cost and time-to-

market.
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5.10.1	 CHALLENGES IN AI-DRIVEN SMART PRODUCT DEVELOPMENT

AI-based products offer a wide range of implementation technologies, making architecture decisions criti-

cal. Poor analysis can lead to excessive costs, power consumption, or hardware resource constraints. Tradi-

tional domain-specific design methodologies struggle to handle this multi-dimensional design space, often 

leading to miscommunication between teams using different terminologies, delays, or even product failure.

A holistic, scalable methodology and tooling is needed to manage development – from simple IoT devices 

to complex system-of-subsystems (eg, vehicles). Key here is hierarchical design phases and tooling. For 

this, AI-driven smart product development follows five interconnected design phases:

	� requirements capture and management;

	� AI algorithm development and training;

	� architecture exploration;

	� implementation architecture validation; and

	� domain-specific implementation paths.

Each phase propagates requirements and feedback to ensure continuous refinement. We will now examine 

each of these in turn.

1. Requirements capture and management

This phase involves well-established requirements management tools that integrate with subsequent de-

sign workflows.

2. AI algorithm development and training

Neural network development relies on tools such as TensorFlow, PyTorch, Keras, and Apache MXNet, most-

ly open-source and Python-based. The tooling must support importing models from multiple AI frameworks.

3. Architecture exploration

At this stage, potential implementation technologies are evaluated. AI models are mapped onto processing 

elements and accelerators in abstract performance simulations to analyse key metrics:

	� processing time (latency);

	� interconnect utilisation;

	� storage usage; and

	� power consumption.

The goal is to narrow down viable architectures for detailed analysis. To accommodate diverse hardware 

platforms, architecture exploration must support hierarchical virtual modelling, targeting:

	� off-the-shelf electronic control units (ECUs);

	� custom ECUs with standard processors/SoCs;

	� pre-built SoCs with internal accelerators;

	� custom SoCs or 3D ICs; and

	� hybrid solutions combining off-the-shelf and configurable components.

A parametric simulation model enables rapid architecture adjustments and design sweeps. If the analysis 

shows feasibility constraints, either the algorithms or requirements must be adjusted.

4. Validation of implementation architecture

With the solution space reduced, the next step is functional and performance validation using virtual 

platform technology – a bit-accurate, timing-approximate simulation that runs real software on modelled 

processors. This offers:
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	� more precise timing, power and interconnect/memory utilisation analysis than prior simulation models;

	� confidence that the architecture meets constraints; and

	� integration with a full digital twin for real-world validation.

5. Domain-specific implementation paths

Once the architecture is finalised, it is handed off to domain-specific development teams using specialised design 

tools:

	� electronic design automation (EDA) tools for printed circuit board 

(PCB), IC, and three-dimensional IC (3D IC) design;

	� vendor-specific tools for FPGA, NPU and custom SoC implementation; and

	� conventional software development tools for firmware and application software.

6. Access to tools

To support small and mid-sized companies, development tools must be:

	� affordable with low entry barriers;

	� easily accessible, such as cloud-based solutions with pre-installed  

toolchains and secure remote access; and

	� supported professionally, as open-source tools require expertise 

to handle the complexity of AI system design

To summarise, AI-driven smart product development demands an integrated, multi-phase approach with scalable 

methodologies and toolchains. By addressing implementation challenges early, companies can accelerate time-

to-market, optimise performance, and control costs.

5.11	Conclusion: Challenges driving innovation in Edge AI hardware

Edge AI faces significant constraints in processing power, memory, energy and connectivity, demanding spe-

cialised, efficient hardware and optimised AI models. Software–hardware co-design is essential to align perfor-

mance, power and latency requirements. Harsh operating environments, limited access, and the need for robust, 

secure systems further complicate deployment.

Energy efficiency is a critical driver, pushing innovation in low-power architectures, in-memory computing, and 

neuromorphic hardware. As traditional transistor scaling nears its limits, new solutions such as chiplets, 3D inte-

gration, and emerging technologies (eg, photonics, memristors, biological processors) are gaining traction. Stan-

dardisation, modularity, and advanced design tools are crucial to manage complexity, ensure interoperability and 

accelerate development. Finally, lifecycle sustainability – through efficient updates, monitoring and maintenance 

– is key to enabling scalable, long-term Edge AI deployment.
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6	 MultiSpin.AI: An Opportunity for Europe to Lead 
the Field of Edge AI Computation Hardware

The increasing demand for real-time, energy-efficient AI processing has driven the development of dedicated 

hardware architectures for Edge AI applications. Traditional digital computing hardware based on von Neu-

mann architectures cannot keep up with these AI requirements, leading to the development of novel computing 

schemes. In this chapter, we explore the evolution of Edge AI hardware, focusing on spintronic-based analogue 

AI platforms such as MultiSpin.AI[27], which could play an important role in the development of novel Edge AI 

hardware in Europe.

6.1	 Requirements on Edge AI hardware driving innovation  

in spintronics

The transition from cloud-based AI processing to Edge AI has been significantly accelerated by emerging indus-

tries such as autonomous vehicles, which necessitate real-time processing, minimal latency, and reduced energy 

consumption. This industry-specific shift has led to increased demand for specialised AI hardware solutions char-

acterised by low power usage and high computational efficiency.

6.2	 Spintronic AI platforms

Spintronic technologies exploit the intrinsic quantum mechanical property of electron spin for information stor-

age and computation. These technologies have emerged as promising foundations for both general-purpose 

neuromorphic systems and specialised analogue in-memory coprocessors. Spintronic-based systems offer signif-

icant advantages, including ultra-low power consumption, improved scalability, and resilience to miniaturisation 

effects, making them ideally suited for compact, energy-sensitive Edge AI applications.

Collectively, these technological innovations represent a transformative step in AI hardware, providing solutions 

specifically tailored for edge computing environments where energy efficiency, speed and real-time responsive-

ness are paramount.

27  https://multispinai.eu

https://multispinai.eu


A joint European Roadmap for Edge AIARTIFICIAL INTELLIGENCE AT THE EDGE

32

6.3	 Comparison of Edge AI hardware platforms

HARDWARE TYPE
POWER  
EFFICIENCY 
(TOPS/W)

PROCESSING  
DENSITY  
(TOPS/MM²)

SUITABILITY FOR  
AI INFERENCE

GPGPUs  
(eg, NVIDIA Jetson)

10–20 0.2–0.5 High

Neuromorphic chips 
(Intel’s Loihi)[28] 50–100 0.3–0.6

Moderate, appli-
cation specific

In-memory coprocessor (PCM, 
ReRAM)[29] 75–150 0.6–1.2 High

Spintronics-based in-memory 
coprocessor (MultiSpin.AI)[30] 1,000+ 2.0+ Very high

Table 6.1: Comparing hardware types

6.3.1	 THE ROLE OF SPINTRONICS IN AI HARDWARE EVOLUTION

Spintronics significantly enhances traditional charge-based electronics by exploiting the spin property of elec-

trons in addition to charge transport. While conventional electronics rely primarily on charge to generate voltag-

es, currents and define resistance, spintronics leverages electron spin – a quantum mechanical property repre-

senting intrinsic angular momentum – to achieve more sophisticated functionalities.

This dual utilisation of electron charge and spin opens pathways to advanced technologies and new paradigms in 

computing and data storage. The additional functionalities offered by spin-based effects include the following.

	� Non-volatility: Spin-based devices, such as MRAM, retain stored information even in the absence of 

power, eliminating the need for continuous energy supply. This inherent memory retention capability 

facilitates durable and persistent data storage, crucial for reducing boot-up time and enhancing reliability 

in electronic devices.

	� Energy efficiency: Spintronic devices drastically reduce power consumption compared to traditional 

electronics. This efficiency arises from the minimal energy required to manipulate electron spin states 

compared to moving charges through resistive channels. Spintronics thus significantly lowers energy 

dissipation, potentially reducing power usage by orders of magnitude, contributing to longer battery life 

and more sustainable electronic systems.

28   The Loihi 2 chip by Intel consists of six embedded microprocessor cores (Lakemont x86) and 128 fully asynchronous neuron cores  
connected by a network-on-chip (see https://open-neuromorphic.org/neuromorphic-computing/hardware/loihi-2-intel/). 
Intel claims Loihi is about 1,000 times more energy efficient than general-purpose computing systems used to train neural networks  
(see https://en.wikipedia.org/wiki/Cognitive_computer).

29    Information on specific performance metrics for in-memory coprocessors using phase-change memory (PCM)  
or ReRAM varies based on implementation. mPower consumption details for these technologies are implementation-specific  
(see https://www.spintronics-info.com/new-eu-funded-project-applies-spintronics-field-artificial-intelligence).  
The flexibility of PCM and ReRAM-based in-memory coprocessors depends on their design and application.

30   The MultiSpin.AI project aims to develop an AI coprocessor based on a crossbar of multi-level magnetic tunnel junctions (M2TJ) cells, 
enabling n-ary state cells (see https://researchportal.vub.be/en/projects/multispinai-n-ary-spintronics-based-edge-computing-co-processor-f). 
The MultiSpin.AI project is designed to enhance neuromorphic computing by integrating spintronic hardware and AI, aiming for significant 
advancements in AI development.

https://open-neuromorphic.org/neuromorphic-computing/hardware/loihi-2-intel/
https://en.wikipedia.org/wiki/Cognitive_computer
https://www.spintronics-info.com/new-eu-funded-project-applies-spintronics-field-artificial-intelligence
https://researchportal.vub.be/en/projects/multispinai-n-ary-spintronics-based-edge-computing-co-processor-f
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	� Scalability: The intrinsic nature of electron spin allows spintronic technologies to be integrated at very 

high densities, facilitating scalability to smaller dimensions without compromising device performance. 

This feature is critical for developing the ultra-high-density storage solutions and compact computing 

architectures necessary for next-generation electronics, including quantum computing and advanced ICs.

	� Low bit-to-bit variability: Spin-based technologies exhibit inherently low variability between individual 

bits, ensuring consistently high-accuracy performance, especially crucial for AI workloads. Reduced 

variability enhances computational precision, reliability and reproducibility in critical applications, such 

as neural network inference, machine-learning accelerators, and precise computational tasks requiring 

stable and repeatable results.

In summary, spintronics not only complements but significantly advances traditional electronic approaches by 

enabling more efficient, robust, scalable and reliable computing systems, and is therefore poised to address 

future technological challenges.

The key spintronic technologies used in MultiSpin.AI are as follows.

	� SOT devices: Spin-orbit torque devices utilise spin-orbit coupling to rapidly switch magnetic states. This 

enables high-speed, energy-efficient computation, ideal for advanced computing and AI applications, 

significantly reducing power consumption and improving device reliability.

	� Multi-level magnetic tunnel junctions (M2TJ): M2TJ support multiple magnetic states per cell, enabling 

n-ary logic operations. This enhances computational efficiency, reduces energy usage, and increases 

accuracy in AI workloads, providing reliable and efficient processing capabilities.

6.4	 MultiSpin.AI: A paradigm shift in Edge AI processing

MultiSpin.AI has advantages over conventional AI hardware. For instance, it introduces an n-ary spintronic AI 

coprocessor, overcoming the limitations of existing AI accelerators. Key benefits include:

	� bypassing the von Neumann bottleneck with memory-integrated AI processing;

	� reducing energy consumption by over 1,000 times compared to conventional digital AI chips; and

	� enabling high-density, real-time AI inference for edge applications.
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Performance comparison

TECHNOLOGY
ENERGY EFFICIENCY 
(TOPS/W) LATENCY (NS) SCALABILITY

CPUs[31] 1–5 1,000+ Low

GPGPUs[32] 10–20 500–1000 Moderate

Neuromorphic 
chips[33] 50–100 100-500 High

MultiSpin.AI  
coprocessor[34] 1,000+ <10 Very high

6.4.1	 THE STRATEGIC IMPORTANCE OF MULTISPIN.AI FOR EUROPEAN AI HARDWARE

So why should MultiSpin.AI be monitored and developed in Europe?

	� European innovation leadership: Europe currently lacks a major player in AI semiconductor technologies. 

Investing in MultiSpin.AI aligns with the European Chips JU initiative, boosting Europe’s sovereignty in 

chip development and enhancing competitiveness in next-generation AI computing.

	� Alignment with sustainability goals: AI workloads consume increasing amounts of energy. MultiSpin.AI’s 

ultra-low power spintronic technology directly supports the European Green Deal, significantly cutting 

energy use and aiding sustainable digital transformation.

	� Strategic Edge AI applications: MultiSpin.AI’s technology benefits critical European sectors such as 

automotive, healthcare and industrial automation, enabling efficient, real-time and low-energy AI 

processing. This drives innovation, sustainability and competitiveness in key industries.

31    Traditional CPUs typically exhibit energy efficiencies ranging from one to five TOPS/W, depending on the specific architecture and workload. 
CPUs generally have latencies exceeding 1,000 nanoseconds, influenced by factors such as instruction processing and memory access times. 
CPUs face scalability challenges due to limitations in parallel processing capabilities and increasing power consumption with added cores.

32    GPGPUs offer energy efficiencies between 10 and 20 TOPS/W, leveraging parallel architectures for enhanced performance. GPGPUs typically 
exhibit latencies ranging from 500 to 1,000 nanoseconds, depending on the specific architecture and workload. GPGPUs provide moderate 
scalability, effectively handling parallel tasks, but encounter challenges with memory bandwidth and power consumption as the number of 
cores increases.

33    Neuromorphic chips, such as IBM’s NorthPole, have achieved significant energy-efficiency improvements, outperforming traditional GPUs 
in certain tasks (see https://research.ibm.com/blog/northpole-llm-inference-results). Neuromorphic systems are engineered to process 
information in a highly parallel and energy-efficient manner, making them ideally suited for applications requiring low latency  
(see https://aditya-sunjava.medium.com/innovative-alternatives-to-gpu-computing-for-parallel-processing-8340f91e1a79). Neuromorphic 
architectures are designed for high scalability, enabling efficient parallel processing and adaptability to complex computational tasks.

34    The MultiSpin.AI project aims to develop a spintronics-based edge computing coprocessor, targeting up to 1,000 times higher energy efficiency 
compared to traditional architectures (see https://multispinai.eu/the-project/). This technology is designed for ultra-low latency responses, 
making it ideal for applications requiring instant processing in energy-constrained environments. The spintronics-based design of the MultiSpin.
AI coprocessor offers very high scalability, facilitating efficient parallel processing and integration into various computing environments.

https://research.ibm.com/blog/northpole-llm-inference-results
https://aditya-sunjava.medium.com/innovative-alternatives-to-gpu-computing-for-parallel-processing-8340f91e1a79
https://multispinai.eu/the-project/


A joint European Roadmap for Edge AI ARTIFICIAL INTELLIGENCE AT THE EDGE

35

6.5	 Sustaining the future of spintronic AI hardware

The sustainable future of spintronic AI hardware includes the following pillars.

	� Funding and policy support: Securing dedicated funding and policy support is essential to position 

Europe as a leader in spintronic AI. Integrating MultiSpin.AI into Horizon Europe will provide necessary 

resources and enable strategic planning and implementation.

	� Industry collaborations: Collaborations with semiconductor companies such as STMicroelectronics, 

Infineon Technologies, NXP Semiconductors, and research institutions like imec are key to commercialising 

spintronic technologies. Their design and fabrication expertise can expedite product development and 

market entry.

	� Academic research: Expanding academic research in spintronic neuromorphic computing will enhance 

Europe’s position in next-generation AI hardware. Supporting research on spintronic materials, devices 

and algorithms is crucial for innovation and intellectual property creation.

	� Addressing growing AI demand: Rising AI demand necessitates energy-efficient, high-performance 

accelerators. MultiSpin.AI provides an opportunity to advance sustainable AI hardware innovation. 

Collaboration among policymakers, academia and industry is vital to develop and commercialise this 

technology effectively.

6.6	 Conclusion

The growing demand for real-time, energy-efficient AI processing is outpacing the capabilities of traditional 

digital hardware, prompting a shift toward novel architectures tailored for Edge AI. Spintronic technologies – 

exemplified by platforms such as MultiSpin.AI – offer a promising alternative by enabling ultra-low power, scalable 

and high-performance AI inference. With advantages such as in-memory processing, non-volatility and quantum-

level efficiency, spintronic systems address key Edge AI challenges, including latency, energy consumption and 

device miniaturisation.

MultiSpin.AI, in particular, represents a paradigm shift, delivering over 1,000x energy efficiency improvements 

compared to conventional processors. It also aligns with Europe’s strategic goals in sustainability, digital 

sovereignty and industrial competitiveness. To fully realise this potential, continued investment, cross-sector 

collaboration and targeted research are essential. Spintronic AI hardware not only meets the technical demands 

of edge computing, but also positions Europe as a leader in next-generation AI innovation.
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7	 KDT and Chips JU Research and Innovation 
Timeline

Chips JU (formerly Key Digital Technologies) is an industry-led initiative aimed at boosting Europe’s semiconduc-

tor ecosystem by tackling critical technological and strategic challenges. Its core focus, “Advanced Chip Design”, 

targets next-generation architectures for AI, IoT and edge computing. For this chapter, we will intentionally nar-

row our scope to highlight some prominent trajectories in the current scientific Edge AI landscape, distilling 

key insights and outcomes. While other programmes, such as Horizon Europe and national initiatives, also drive 

progress in AI and Edge AI, they fall outside our data collection scope.

7.1	 Data collection

Projects were sourced from the CORDIS database (European Commission) [35] and the Chips JU website[36]. After 

reviewing their goals and objectives, we categorised them into two groups:

	� projects focused on innovative Edge AI hardware and use cases; and

	� projects centred on ecosystem development, tools, and engineering platforms.

For each project, we recorded key dimensions, including name, objectives, use cases, and information sources, 

including official websites. We used ChatGPT-4o (premium version with web search) to extract project goals and 

example use cases, verifying all results for accuracy.

Due to the confidential nature of many deliverables, and their strategic value to industrial partners, this analysis 

relies on publicly available data. For the first category, we examined example use cases featured on public project 

pages. For the second, we gathered insights on hardware strategies and platforms. This allowed us to identify 

the expected outcomes and contributions of each project based on accessible information.

The KDT JU launched AI4DI (Artificial Intelligence for Digitizing Industry) in Europe in 2019, followed by 

ANDANTE (AI for New Devices and Technologies at the Edge) in 2020. Both projects have now concluded and 

delivered tangible results. Meanwhile, later projects are still ongoing, and their full impact will become evident 

in the coming years.

35  https://cordis.europa.eu

36  https://www.chips-ju.europa.eu

https://cordis.europa.eu
https://www.chips-ju.europa.eu
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Figure 7.1: Timeline of the KDT and Chips JU projects

Table 7.1 provides an overview of the project goals, objectives and example use cases.

2019	 2020	 2021	 2022	 2023	 2024	 2025	 2026	 2027

Edge AI-Trust

Resilient-Trust

Neurokit2E Platform

LoLiPoP IoT

ISOLDE Platform

AIMS5.0

REBECCA Platform

HiCONNECTS

Newlife

AGRASENSE

A-IQ Ready

CLEVER

TRISTAN

Edge AI

RETICLES Platform

StorAIge

AI-TWILIGHT

DAIS

Andante

AIDI
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Table 7.1: Project goals, objectives and example use cases

PROJECT GOALS AND OBJECTIVES EXAMPLE USE CASES WEBSITE

AI4DI 	� Advance Moore’s Law by 
developing innovative edge 
processing technologies.

	�  Bridge AI from centralised 
cloud solutions to distributed 
edge solutions to increase 
efficiency.

Automotive: AI-based logistics solutions for 
optimising assembly processes, development 
of autonomous reconfigurable battery 
systems, virtual AI platforms for training, 
deployment of autonomous mobile robotic 
agents for operational efficiency, and 
predictive maintenance using digital twins.

Semiconductor: Enhancing wafer inspection 
using AI-based vision systems, automating 
semiconductor process inspection, and 
improving MEMS sensor predictions through 
neural networks.

https://ai4di.eu

ANDANTE 	� Develop innovative hardware/
software platforms leveraging 
neuromorphic and SNN 
architectures for IoT and edge 
devices.

Digital industry: Indoor positioning systems 
for real-time monitoring, quality control 
using AI-based edge computing.

Digital farming: AI-driven systems for pest 
and disease prediction in crops, autonomous 
weeding robots for sustainable farming.

Transport and smart mobility: Autonomous 
drone systems, acoustic signal classification 
for underwater applications, robust 
autonomous vehicle landing, and multi-
modal path planning.

Healthcare: AI-driven medical imaging 
analysis and glucose monitoring systems.

https://www.andante-ai.eu

DAIS 	� Create distributed AI systems 
that provide faster, secure 
and energy-efficient data 
processing.

	� Ensure connectivity and 
interoperability in distributed 
Edge AI systems.

Digital industry: Deployment of distributed 
AI to enable automation and efficiency in 
manufacturing.

Digital life: Integration of Edge AI in smart 
home environments for enhanced user 
experience and real-time responsiveness.

Transport and smart mobility: Leveraging 
Edge AI for improving autonomous vehicle 
perception and decision-making, ensuring 
secure and reliable communication between 
edge devices.

https://dais-project.eu

StorAIge 	� Develop advanced embedded 
phase change memory (ePCM) 
and FDSOI 28nm technologies 
for high-performance edge 
applications.

Automotive: Enhanced automotive systems 
leveraging next-gen semiconductor memory 
for faster data processing.

Industrial applications: High-reliability edge 
computing for industrial machinery.

Secure data processing: Edge technologies 
designed to improve security and reduce 
latency in data transmission and storage.

https://storaige.eu

EdgeAI 	� Build secure end-to-end 
hardware/software solutions 
for AI-driven edge platforms.

	� Advance hybrid architecture 
designs for scalable and 
efficient AI systems.

Digital industry: Integration of advanced 
sensing, automated defect classification, and 
AI-enabled decision-making in production 
environments.

Energy sector: Distributed AI for optimising 
energy usage in smart grids and industrial 
operations.

Agriculture and food: Use of AI for 
predictive analytics, quality control, and 
precision farming.

Mobility: Enhancing autonomous vehicle 
technologies with Edge AI.

Digital society: AI-driven systems for 
activity and intention detection in real-world 
environments.

https://edge-ai-tech.eu

https://ai4di.eu
https://www.andante-ai.eu
https://dais-project.eu
https://storaige.eu
https://edge-ai-tech.eu
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PROJECT GOALS AND OBJECTIVES EXAMPLE USE CASES WEBSITE

CLEVER 	� Develop an edge-cloud 
continuum for embedded 
AI solutions targeting 
futuristic industries and urban 
transformations.

Fashion: Deployment of virtual fitting rooms 
to improve online shopping experiences.

Smart environments: Architectures to 
detect and adapt to concept drift in dynamic 
environments.

Smart cities: Application of data-driven 
transformations for urban development, 
infrastructure optimisation, and citizen 
services enhancement.

https://www.cleverproject.eu

A-IQ Ready 	� Innovate IoT systems by 
integrating quantum sensors 
and neuromorphic computing.

	� Build edge-to-cloud solutions 
supporting the digital 
backbone for Society 5.0.

Quantum technologies: Integration of 
multi-physics (quantum) sensors to improve 
accuracy in complex environmental sensing 
applications.

IoT systems: Development of edge-
enabled, AI-integrated devices for a wide 
range of applications, including smart 
home systems, healthcare monitoring and 
industrial process automation.

https://www.aiqready.eu

AGRAR-
SENSE

	� Develop innovative 
microelectronics, photonics 
and packaging solutions 
tailored for agricultural and 
forestry applications.

	� Advance ICT and data 
management systems to 
enable large-scale field 
demonstrations that address 
real-world industrial needs.

	� Improve global food security 
and sustainability by deploying 
cutting-edge tools that 
increase agricultural efficiency 
and productivity.

	� Implementation of automated tools for 
precision agriculture, such as robotic 
systems for planting and harvesting.

	� Deployment of advanced sensor networks 
to monitor crop health, soil moisture, and 
environmental conditions, enabling data-
driven decision-making for farmers.

https://www.agrarsense.eu

Newlife 	� Design and develop 
comprehensive health-
monitoring solutions that 
cover the entire pregnancy 
and neonatal period, ensuring 
the health and well-being of 
mothers and their babies. 

	� Employ non-invasive and 
early-detection methods to 
identify potential health risks, 
such as gestational diabetes 
or pre-eclampsia, before they 
become severe.

	� Lower the incidence of 
pre-term births and related 
complications, leading to 
reduced healthcare costs and 
improved quality of life for 
families.

	� Continuous monitoring of maternal vital 
signs, such as blood pressure and oxygen 
levels, using wearable devices and smart 
sensors.

	� Development of non-invasive imaging 
and diagnostic tools to monitor foetal 
development and detect anomalies, 
ensuring timely medical interventions 
when necessary.

https://www.newlife-kdt.eu

AIMS5.0 	� Strengthen Europe’s techno-
logical and digital sovereignty 
by integrating advanced AI 
into sustainable production 
processes.

	� Facilitate the transition from 
Industry 4.0, which focuses 
on automation and data ex-
change, to Industry 5.0, which 
emphasises human-centric, 
environmentally friendly and 
sustainable workplaces.

	� Integration of AI algorithms to optimise 
energy consumption and material 
use in factories, reducing costs and 
environmental impact.

	� Development of smart AI systems that 
assist workers with repetitive tasks, 
enhancing safety and ergonomics while 
maintaining high productivity levels.

https://aims50.eu

https://www.cleverproject.eu
https://www.aiqready.eu
https://www.agrarsense.eu
https://www.newlife-kdt.eu
https://aims50.eu
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PROJECT GOALS AND OBJECTIVES EXAMPLE USE CASES WEBSITE

	� Enhance the eco-efficiency of 
manufacturing by optimising 
resource usage and minimising 
waste through AI-driven tools.

EdgeAI-
Trust

	� Create a secure and trust-
worthy ecosystem for Edge 
AI, focusing on the design of 
architectures, components 
and development tools that 
support edge devices.

	� Enable real-time collaboration 
among heterogeneous edge 
devices, ensuring they operate 
securely and sustainably in 
decentralised networks.

	� Advance AI applications for 
safety-critical systems, such 
as healthcare, autonomous 
transportation and cybersecu-
rity, prioritising reliability and 
resilience.

	� Deployment of federated learning 
models across distributed edge devices 
in healthcare, ensuring data privacy and 
compliance with regulations like GDPR.

	� Implementation of real-time decision-
making capabilities in autonomous 
vehicles using Edge AI to enhance safety, 
responsiveness and operational reliability.

https://www.edgeai-trust.eu

Resilient 
Trust

	� Secure IoT 5.0 for small and me-
dium-sized enterprises (SMEs): 
Develop an end-to-end security 
framework tailored for SMEs, 
addressing vulnerabilities due 
to lack of specialised security 
resources.

	� Trust and resilience via hard-
ware: Create specialised hard-
ware components (IPs) that 
build system-level trust and 
protect against quantum-resis-
tant and AI-based attacks.

	� Threat modelling and architec-
ture: Perform threat analysis, 
identify assets and risks, and 
define security requirements 
to shape the secure system 
design.

	� Sustainable development and 
digital sovereignty: Strengthen 
Europe’s independence in chip 
and IoT security, fostering soci-
etal and economic value.

Multi-standard IoT communication: 
Integrate a flexible transceiver into STM32 
platforms supporting WLAN, UWB, DECT 
NR+, BLE, ZigBee – all in one chip.

Drone detection and jamming: Use intel-
ligent systems to detect and selectively 
jam drone signals for security-sensitive 
environments.

Secure supply chain (implied): Ensure 
traceability of chip lifecycle via blockchain 
and physically unclonable functions (PUFs) 
to prevent IP theft and counterfeiting.

Ambient intelligence in offices (implied): 
Trustworthy IoT integration for smart office 
environments, enhancing data privacy and 
system resilience.

https://tima.univ-grenoble-
alpes.fr/research/amfors/
research-projects/resilient-
trust

AI Twilight 	� Develop trustworthy, low-
power AI solutions: AI Twilight 
focuses on designing and 
integrating AI at the edge 
in a manner that balances 
performance with energy 
efficiency.

	� Foster secure data handling: 
Ensures end-to-end data 
privacy and integrity while 
enabling real-time analytics.

	� Strengthen European digital 
sovereignty: Contributes to 
Europe’s competitiveness by 
creating AI ecosystems that 
reduce dependency on external 
technologies.

Industrial quality control: AI-based 
inspection systems at the edge that rapidly 
detect defects on production lines without 
large-scale cloud dependencies.

Resource-efficient smart sensors: 
Low-power sensors for monitoring critical 
infrastructure (eg, water treatment, public 
utilities) with on-device intelligence.

Smart healthcare devices: AI-enabled 
patient-monitoring solutions that process 
vital signals locally, improving responsive-
ness and data security.

https://ai-twilight.eu

https://www.edgeai-trust.eu
https://tima.univ-grenoble-alpes.fr/research/amfors/research-projects/resilient-trust
https://tima.univ-grenoble-alpes.fr/research/amfors/research-projects/resilient-trust
https://tima.univ-grenoble-alpes.fr/research/amfors/research-projects/resilient-trust
https://tima.univ-grenoble-alpes.fr/research/amfors/research-projects/resilient-trust
https://ai-twilight.eu
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PROJECT GOALS AND OBJECTIVES EXAMPLE USE CASES WEBSITE

hiCONNECTS 	� Advance high-speed 
connectivity: Focuses 
on designing the next 
generation of secure, high-
throughput and low-latency 
interconnect technologies.

	� Optimise edge-to-cloud 
architectures: Bridges edge 
devices and data centres to 
enable seamless, scalable 
data processing.

	� Promote interoperability 
and standards: Facilitates 
cooperation across diverse 
platforms to ensure 
broad adoption of high-
performance connectivity 
solutions in Europe.

Automotive data networks: High-band-
width interconnects for vehicle-to-vehicle 
(V2V) and vehicle-to-infrastructure (V2I) 
communication, supporting autonomous 
driving and advanced driver-assistance 
systems. Smart city infrastructure: Robust 
data transmission between sensors, traffic 
lights and municipal services, improving 
urban mobility and resource management.

Industry 4.0 connectivity: Reliable, 
real-time communications for factory 
automation and robotics, reducing latency 
and boosting productivity in manufacturing 
environments.

https://www.hiconnects.org

The projects surveyed collectively demonstrate a diverse range of Edge AI solutions that have the potential to 

transform industries such as automotive, manufacturing, healthcare and agriculture. Innovations in hardware 

(eg, embedded memory, neuromorphic chips), software (eg, federated learning, real-time analytics), and archi-

tectural design (eg, edge–cloud continuum) are unlocking new levels of performance, security and sustainability. 

Furthermore, these advancements are fostering cross-sector collaborations, enabling technology transfer and 

shared value creation. As Edge AI matures, it holds the promise of more human-centric, resilient and eco-friendly 

applications, setting the stage for widespread digital transformation that spans the entire economic and social 

landscape.

7.2	 Design hardware platforms, engineering tools and ecosystems

KDT and Chips JU fund a series of projects focused on tools and platforms for hardware design, integration and 

engineering. Table 7.2 introduces the innovative hardware approaches pursued in these projects.

https://www.hiconnects.org
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Table 7.2: Hardware design, integration and engineering

PROJECT GOALS AND OBJECTIVES
EXAMPLE APPROACHES FOR 
HARDWARE ENGINEERING TOOLS 
AND PLATFORMS

WEBSITE

RETICLES 	� Develop specialised, high-performance 
reconfigurable hardware platforms and 
design flows.

	� Provide tools that simplify system parti-
tioning and integration for edge and cloud 
applications.

	� Foster European sovereignty in next-gen-
eration computing and AI by promoting 
open standards and collaboration.

	� Creation of reconfigurable 
accelerator IP blocks adaptable to 
multiple domains (eg, AI inference, 
security).

	� Development of toolchains that 
automate partitioning across FPGA, 
ASIC and processor architectures.

	� Utilisation of open-source hardware 
frameworks for faster prototyping 
and validation.

https://reticles.eu

Rebecca-Chip 	� Drive innovations in chip architecture 
for next-gen machine learning and data 
analytics.

	� Ensure energy-efficient design to meet 
edge constraints without sacrificing per-
formance.

	� Strengthen the European semiconductor 
ecosystem through joint research and pilot 
deployments.

	� Exploration of heterogeneous SoC 
designs, combining CPU, GPU and 
specialised accelerators on a single 
chip.

	� Use of advanced packaging and 
interconnect solutions to optimise 
bandwidth and reduce power con-
sumption.

	� Development of EDA tool suites that 
integrate AI-specific design libraries.

https://www.rebecca-
chip.eu

TRISTAN 	� Provide a trusted hardware platform for 
AI and high-performance computing (HPC) 
workloads in critical domains.

	� Enhance security-by-design 
methodologies, including hardware-level 
encryption and attestation.

	� Accelerate industrial uptake of secure and 
performance-optimised chipsets for high-
assurance applications.

	� Implementation of secure enclaves 
and cryptographic modules embed-
ded at the silicon level. 

	� Development of verification work-
flows integrating formal methods to 
validate hardware security proper-
ties.

	� Integration with hardware-based root 
of trust for mission-critical systems 
(eg, aerospace).

https://tristan-project.
eu

ISOLDE 	� Innovate in the design and verification of 
complex SoCs for AI, with a focus on low 
power consumption.

	� Offer modular frameworks that shorten 
time-to-market for embedded and edge 
computing solutions.

	� Promote standardisation and interop-
erability of EDA tools across industry 
partners.

	� Development of multi-level simula-
tion and debugging environments 
tailored to AI/ML hardware.

	� Provision of IP blocks optimised for 
battery-powered devices, reducing 
leakage and dynamic power.

	� Creation of cross-tool integration 
plugins for streamlined chip design 
and verification processes.

https://www.isolde-
project.eu

LOLIPOP 	� Advance low power IoT platforms through 
hardware-software co-design.

	� Facilitate edge intelligence by incorporat-
ing lightweight AI accelerators on sensor 
devices.

	� Strengthen the IoT ecosystem in Europe, 
targeting ultra-low power, long-lifetime 
embedded solutions.

	� Use of custom ASIC accelerators for 
microcontrollers handling local AI 
tasks (eg, anomaly detection).

	� Energy harvesting techniques com-
bined with ultra-low-power silicon 
design for IoT nodes.

	� Hardware toolkits enabling quick pro-
totyping of smart sensor solutions.

https://www.lolipop-
iot.eu

NeuroKit2e 	� Research and implement neuromorphic 
hardware paradigms for high-efficiency 
computation.

	� Enable event-driven processing and spike-
based neural networks in real-world edge 
scenarios.

	� Pioneer hardware-software toolchains that 
leverage bio-inspired architectures for AI 
at the sensor level.

	� Integration of SNN cores with 
analogue/digital hybrid designs for 
real-time, low-power AI.

	� Development of simulation and 
compiler frameworks to map conven-
tional ML models onto neuromorphic 
hardware.

	� Exploration of CMOS and emerging 
device approaches for spike-based 
computation.

https://www.neuro-
kit2e.eu

https://reticles.eu
https://www.rebecca-chip.eu
https://www.rebecca-chip.eu
https://tristan-project.

eu
https://tristan-project.

eu
https://www.isolde-project.eu
https://www.isolde-project.eu
https://www.lolipop-iot.eu
https://www.lolipop-iot.eu
https://www.neurokit2e.eu
https://www.neurokit2e.eu
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These initiatives emphasise hardware-centric innovation, with each project aiming to push boundaries in semi-

conductor design, low power architectures, and security-by-design. They share a drive to refine or develop new 

toolchains and platforms that streamline the creation of advanced hardware solutions – whether for FPGAs, 

ASICs, neuromorphic chips, or secure SoCs.

Across all projects, energy efficiency and AI acceleration in resource-constrained environments remain central 

goals, often achieved by integrating trust anchors, encryption, and neuromorphic or event-driven paradigms at 

the silicon level. Lastly, the collective focus on collaborative development and European sovereignty highlights a 

broader ambition to bolster the continent’s standing in semiconductor technology and AI innovation.[37]

37   Concrete benchmarks cannot be disclosed due to the sensitivity and confidentiality of the project deliverables, in order to maintain the 
participating companies’ competitive advantage.
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8	 Market Dynamics
The market dynamics discussed in this chapter can be observed from the key players driving innovation in Edge 

AI and creating new applications in recently growing markets. Market boundaries are becoming blurred as most 

European semiconductor companies are now global. Infineon, for example, has the largest number of its employ-

ees in China/Asia.

Strategically important markets are shifting to emerging industrial countries such as India and Mexico, which are 

members of the BRICS[38] alliance. Europe also has a growing need to secure supply chains and gain technological 

autonomy in the face of current geopolitical tensions.

Global IT and AI players such as Google, AWS and Tesla have long recognised this global trend, and are building 

flexible cross-domain architectures that allow assets to be moved flexibly across domains and countries.

Table 8.1 presents an overview of the leading semiconductor companies, ranked by market capitalisation, as of 

February 14, 2025. Of course, market capitalisations are subject to change due to market fluctuations, and this 

data is based on the latest available information as of the specified date.

RANK COMPANY MARKET CAPITALISATION (USD)

1 NVIDIA 3.313 trillion

2 Broadcom 1.105 trillion

3 TSMC 1.046 trillion

4 ASML 305.51 billion

5 Qualcomm 190.39 billion

6 Advanced Micro Devices (AMD) 181.18 billion

7 Texas Instruments 164.92 billion

8 Applied Materials 149.75 billion

9 Intel 104.48 billion

10 Lam Research 106.92 billion

11 Micron Technology 106.58 billion

12 KLA Corporation 101.56 billion

13 Marvell Technology 89.55 billion

14 Tokyo Electron 73.93 billion

15 NXP Semiconductors 55.81 billion

16 Infineon Technologies 51.10 billion

17 Analog Devices 103.86 billion

18 SK Hynix 99.96 billion

19 STMicroelectronics 21.41 billion

20 ON Semiconductor 21.45 billion

Table 8.1: The leading semiconductor companies, ranked by market capitalisation 

(Source: https://disfold.com/industry/semiconductors/companies/#google_vignette)

38    BRICS stands for Brazil, Russia, India, China and South Africa. Egypt, Ethiopia, Iran and the United Arab Emirates have also recently joined the 
alliance (see https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2024)760368).

https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2024)760368
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The biggest European chip vendor companies, such as NXP, Infineon and STMicroelectronics, are in the top 20; 

NVIDIA, by a large margin, is ahead of the pack. According to the recent report of market.us[39], the global Edge AI 

chips market is projected to grow from USD2.4 billion in 2023 to USD25.2 billion by 2033, reflecting a compound 

annual growth rate (CAGR) of 26.5% during the forecast period.

The growth in the Edge AI chips market is driven by several factors.

	� Reduced latency: Processing data on-device minimises the delay associated with transmitting data to 

centralised cloud servers, leading to faster decision-making.

	� Enhanced privacy: On-device processing ensures that sensitive data remains local, reducing the risk of 

data breaches and enhancing user privacy.

	� Improved efficiency: By handling AI tasks locally, devices can operate more efficiently, conserving 

bandwidth and reducing reliance on constant internet connectivity.

These advantages are contributing to the rapid adoption of Edge AI solutions across various industries, including 

consumer electronics, automotive, healthcare and manufacturing. It is important to note that market projec-

tions can vary based on different research methodologies and data sources. For instance, some reports suggest 

that the global AI chips market, which includes both edge and cloud AI chips, could reach up to USD520.91 billion 

by 2033, growing at a CAGR of 37.77%[40].

In summary, the Edge AI chips market is poised for substantial growth, driven by the increasing demand for re-

al-time processing, enhanced privacy and improved efficiency in AI applications across various sectors. As leading 

market player, NVIDIA offers a comprehensive suite of platforms and solutions tailored for Edge AI applications 

across various industries.

39  https://market.us/report/edge-ai-ics-market

40  https://www.cervicornconsulting.com/artificial-intelligence-chips-market

https://market.us/report/edge-ai-ics-market
https://www.cervicornconsulting.com/artificial-intelligence-chips-market
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Table 8.2: NVIDIA Edge AI technologies (detailed)

TECHNOLOGY DESCRIPTION KEY FEATURES WEBSITE

Jetson AGX Orin High-performance AI mod-
ule for advanced robotics, 
autonomous machines, 
and edge computing.

	� 12-core Arm Cortex-A78AE CPU.

	� 2048-core Ampere GPU with 64 Tensor 
Cores.

	� Up to 275 TOPS AI performance.

	� Dual NVDLA deep learning accelerators.

	� Supports multi-camera vision AI.

	� Configurable power: 15 W – 60 W.

https://www.nvidia.com/en-us/
autonomous-machines/embed-
ded-systems/jetson-orin/

Jetson Orin NX Mid-tier Edge AI module 
for robotics, smart camer-
as, and embedded vision.

	� 8-core Arm Cortex-A78AE CPU.

	� 1024-core Ampere GPU with 32 Tensor 
Cores.

	� Up to 160 TOPS AI performance.

	� Single NVDLA accelerator.

	� 10 W – 40 W configurable power.

https://www.nvidia.com/en-us/
autonomous-machines/embed-
ded-systems/jetson-orin/

Jetson Orin Nano Entry-level AI module 
for small devices such as 
drones, IoT sensors and 
edge analytics.

	� 6-core Arm Cortex-A78AE CPU.

	� 512-core Ampere GPU with 16 Tensor 
Cores.

	� Up to 67 TOPS AI performance.

	� Power-efficient: 7 W – 25 W.

https://www.nvidia.com/en-us/
autonomous-machines/embed-
ded-systems/jetson-orin/

NVIDIA A2 Tensor 
Core GPU

Low-profile Edge AI GPU 
for inference acceleration 
in small edge servers and 
network appliances.

	� 1280 CUDA Cores, 40 Tensor Cores.

	� 16 GB GDDR6 memory.

	� 36 INT8 TOPS, optimised for AI 
inference.

	� PCIe Gen4, half-length, single-slot.

	� 40 W – 60 W power range.

https://www.nvidia.com/en-gb/
data-center/products/a2/

NVIDIA L4 Tensor 
Core GPU

High-efficiency AI and 
video processing GPU for 
edge data centres and AI 
workloads.

	� 7424 CUDA Cores, 24 GB GDDR6 
memory.

	� Up to 485 TOPS INT8 inferencing.

	� Dedicated AV1 hardware encoding/
decoding.

	� 72 W power consumption.

https://www.nvidia.com/en-us/
data-center/l4/

Jetson AGX Orin 
Developer Kit

Official development 
board for Jetson AGX 
Orin, designed for AI and 
robotics prototyping.

	� Integrated Jetson AGX Orin module.

	� Multiple I/O: PCIe, Ethernet, USB 3.2, 
MIPI CSI for cameras.

	� Preloaded with JetPack SDK and 
TensorRT.

https://developer.nvidia.com/
embedded/learn/get-started-
jetson-agx-orin-devkit

Jetson Orin NX 
Developer Kit

Development board for 
Jetson Orin NX, enabling 
real-world AI testing.

	� Compact design with full I/O support.

	� AI-ready with DeepStream and 
TensorRT.

	� Power-efficient form factor.

https://www.nvidia.com/en-us/
autonomous-machines/embed-
ded-systems/jetson-orin/

NVIDIA JetPack 
SDK

Core software stack 
for Jetson platforms, 
including AI inference and 
vision-processing tools.

	� Includes CUDA, cuDNN, TensorRT.

	� Supports Ubuntu-based Jetson Linux.

	� Cloud-native AI deployment (Docker, 
Kubernetes).

	� Pre-optimised libraries for AI and vision.

https://developer.nvidia.com/
embedded/jetpack

NVIDIA TensorRT AI inference engine that 
optimises and accelerates 
deep learning models for 
real-time edge deployment.

	� 4×–6× faster inference versus 
unoptimised models.

	� Optimised for Jetson and NVIDIA GPUs.

	� Supports INT8, FP16 quantisation for 
efficiency.

	� Works with PyTorch, TensorFlow, and 
ONNX.

https://developer.nvidia.com/
tensorrt

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-gb/data-center/products/a2/
https://www.nvidia.com/en-gb/data-center/products/a2/
https://www.nvidia.com/en-us/data-center/l4/
https://www.nvidia.com/en-us/data-center/l4/
https://developer.nvidia.com/embedded/learn/get-started-jetson-agx-orin-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-agx-orin-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-agx-orin-devkit
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
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TECHNOLOGY DESCRIPTION KEY FEATURES WEBSITE

NVIDIA  
DeepStream SDK

AI-powered intelligent 
video analytics framework 
for edge applications.

	� Accelerates vision AI applications.

	� Supports multiple video streams for 
real-time processing.

	� Integrates TensorRT for optimised 
inference.

	� Used in smart cities, security, and 
retail analytics.

https://developer.nvidia.com/
deepstream-sdk

NVIDIA TAO 
Toolkit

Low-code AI model train-
ing and optimisation tool 
for edge deployment.

	� Fine-tunes pre-trained models with 
transfer learning.

	� Requires minimal training data.

	� Optimises models for Jetson and 
TensorRT.

	� Supports vision AI (detection, 
segmentation, pose estimation).

https://developer.nvidia.com/
tao-toolkit

NVIDIA Triton 
Inference Server

Open-source inference 
server for deploying AI 
models at the edge.

	� Supports PyTorch, TensorFlow, ONNX, 
and TensorRT.

	� Efficient model scheduling and batching.

	� Runs on Jetson, edge GPUs, and data 
centres.

	� Enables multi-tenant AI inference 
workloads.

https://developer.nvidia.com/
dynamo

Key offerings include those detailed in Table 8.2, which provides a structured summary of NVIDIA’s latest Edge 

AI hardware and tools, covering Jetson modules, discrete GPUs, development kits and AI software. These 

platforms are designed to bring AI capabilities directly to edge devices, enabling real-time processing, enhanced 

privacy, and improved efficiency across various applications. In addition, NVIDIA have designed two new plat-

forms, DIGITS and Cosmos.

	� DIGITS: Introduced by NVIDIA at CES 2025, DIGITS is a personal AI supercomputer designed to provide 

high-performance AI computing to individual developers, researchers and students. This compact system 

is powered by the new NVIDIA GB10 Grace Blackwell Superchip, delivering up to one petaflop of AI 

performance. This enables users to efficiently prototype, fine-tune and run large AI models directly on their 

desktops. Starting at USD3,000, Project DIGITS makes high-performance AI computing more accessible, 

reducing reliance on cloud services and associated costs. Its compact design allows it to operate using a 

standard electrical outlet, making it suitable for various work environments.

	� Cosmos: NVIDIA’s Cosmos is a platform designed to accelerate the development of physical AI systems, 

such as autonomous vehicles and robots. It offers generative world foundation models trained on 

extensive video data, enabling the generation of physics-aware simulations from various inputs. Cosmos 

includes advanced tokenisers for efficient data processing and guardrails to ensure safety and ethical 

standards. By providing these tools, Cosmos aims to make physical AI development more accessible and 

efficient for developers.

https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/tao-toolkit
https://developer.nvidia.com/tao-toolkit
https://developer.nvidia.com/dynamo
https://developer.nvidia.com/dynamo
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8.1.1	 CHANCES AND OPPORTUNITIES FOR THE EUROPEAN VENDORS

European AI chip vendors distinguish themselves from NVIDIA through several unique selling points:

	� Energy efficiency: Companies such as Arm Holdings have developed chip architectures renowned for 

their energy efficiency. Arm’s designs are widely used in mobile devices and are increasingly adopted in 

data centres to reduce power consumption, offering a more sustainable alternative to NVIDIA’s GPUs.

	� Trust, security and safety: Operating within the European Union’s regulatory framework, European 

vendors may benefit from policies aimed at promoting high safety and security standards in the tech 

industry. For instance, the Artificial Intelligence Act, introduced in 2024, contributes to the trustworthiness 

of European solutions. European companies’ expertise in power management ICs and embedded 

security solutions also provides them with a competitive advantage in Edge AI. Security and safety are 

critical for deploying AI in regulated applications like automotive systems, areas often overlooked by 

others. Processing data locally at the edge enhances security and data protection, which is essential 

for applications such as autonomous vehicles. In terms of products, tools and platforms, the market for 

classical, functionally fixed Edge AI is quite mature. Tools for deploying lightweight, domain-specific GenAI 

models (NXP’s eIQ GenAI Flow) also open the way to deploying GenAI at the edge.

Leading European chip and microelectronics companies, along with prominent research organisations, have 

formed the Edge AI Working Group. Together, they have outlined objectives to create a roadmap to guide the 

future of Edge AI development. This roadmap aims to sustain Europe’s leadership in the field and to keep pace 

with rapid innovations.

8.1.2	 STMICROELECTRONICS

STMicroelectronics (ST) offers a comprehensive suite of Edge AI technologies, combining advanced hardware 

and software solutions to enable efficient on-device AI across various applications. Tabkle 83 provides a summary 

of their key offerings.

Table 8.3: ST key offerings (Source: https://www.st.com/content/st_com/en/st-edge-ai-suite/tools.html)

TOOL/SERVICE DESCRIPTION WEBSITE

ST AIoT Craft An online tool that accelerates the development of 
sensor-to-cloud solutions using ST components with 
in-sensor AI capabilities. It enables users to create 
AI-enabled IoT nodes, program the machine learning 
core within MEMS sensors, and explore end-to-end 
project examples.

https://www.st.com/content/st_com/en/st-edge-ai-
suite/tools.html

NanoEdge AI 
Studio

A free AutoML (Automatic Machine Learning) 
software that guides users step-by-step to integrate 
Edge AI into embedded projects. It supports over 
1,000 Arm® Cortex®-M microcontrollers, offering an 
automatic machine-learning model generator and a 
user-friendly interface for end-to-end deployment.

https://www.st.com/en/development-tools/na-
noedgeaistudio.html

ST Edge AI 
Developer Cloud

A free online platform that allows users to optimise 
and benchmark Edge AI models across various ST 
devices. Leveraging the ST Edge AI Core, it provides 
services such as online AI benchmarking, model opti-
misation and profiling, enabling users to run their AI 
models on ST‘s board farm.

https://www.st.com/content/st_com/en/st-edge-ai-
suite/tools.html

https://www.st.com/content/st_com/en/st-edge-ai-suite/tools.html
https://www.st.com/content/st_com/en/st-edge-ai-suite/tools.html
https://www.st.com/content/st_com/en/st-edge-ai-suite/tools.html
https://www.st.com/en/development-tools/nanoedgeaistudio.html
https://www.st.com/en/development-tools/nanoedgeaistudio.html
https://www.st.com/content/st_com/en/st-edge-ai-suite/tools.html
https://www.st.com/content/st_com/en/st-edge-ai-suite/tools.html
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TOOL/SERVICE DESCRIPTION WEBSITE

MEMS Studio A comprehensive desktop software solution de-
signed to enable Edge AI features on MEMS sensors. 
It facilitates the collection, labelling and analysis 
of sensor data, profiling and optimisation of neural 
network and machine-learning models for the intelli-
gent sensor processing unit (ISPU), and configuration 
of the MEMS machine learning core.

https://www.st.com/en/development-tools/
mems-studio.html

ST Edge AI Core A command-line interface (CLI) tool that allows users 
to import AI models from popular machine-learning 
frameworks, perform detailed analyses, and opti-
mise models for deployment on various ST devices, 
including sensors, microcontrollers and micropro-
cessors.

https://www.st.com/en/development-tools/st-
edgeai-core.html

ST Edge AI 
Model Zoo

A collection of reference Edge AI models optimised 
for execution on ST devices. Users can select from 
a variety of AI models, retrain them using provid-
ed datasets and scripts, and deploy them in their 
applications.

https://stm32ai.st.com/model-zoo/

STM32Cube.AI A free STM32Cube expansion package (X-CUBE-AI) 
that enables developers to optimise, profile and 
evaluate neural network and machine-learning mod-
els specifically for STM32 platforms.

https://stm32ai.st.com/stm32-cube-ai/

High Speed 
Datalog

A tool designed to manage the acquisition and la-
belling of sensor data. It allows users to capture and 
monitor high-rate data, manage data using a Python 
SDK, and port projects across multiple MCU series.

https://www.st.com/en/embedded-software/
fp-sns-datalog2.html

StellarStudioAI An AI plugin for Stellar electrification (E) microcon-
trollers, it facilitates the conversion of AI models, 
creation and review of neural network performance 
reports, and automatic conversion of pretrained 
neural networks.

https://www.st.com/en/development-tools/stellar-
studioai.html

AI for 
OpenSTLinux

The X-LINUX-AI is an STM32 MPU OpenSTLinux 
expansion package that supports various AI applica-
tions, including pose estimation (Yolov8n), semantic 
segmentation (DeepLabv3), and image classification 
(MobileNetv2).

https://stm32ai.st.com/ai-for-linux/

Hand Posture 
ToF AI

A hand posture recognition solution that detects a 
set of hand postures based on ST‘s multizone Time-
of-Flight sensors, eliminating the need for a camera. 
It recognises seven predefined hand postures using 
data from an 8x8 ranging distance and signal rate 
matrix.

https://www.st.com/content/st_com/en/campaigns/
st-gesture-and-hand-posture-recognition-imag-mc-
ghpr.html#:~:text=Train%20your%20AI%20to%20
create%20unlimited%20hand%20postures&tex-
t=Our%20Hand%20Posture%20ToF%20AI,Ex-
plore%20new%20possibilities%20today!

These tools collectively provide a robust ecosystem for developers aiming to implement Edge AI solutions across 

a wide range of applications, leveraging STMicroelectronics’ hardware platforms.

https://www.st.com/en/development-tools/mems-studio.html
https://www.st.com/en/development-tools/mems-studio.html
https://www.st.com/en/development-tools/stedgeai-core.html
https://www.st.com/en/development-tools/stedgeai-core.html
https://stm32ai.st.com/model-zoo/
https://stm32ai.st.com/stm32-cube-ai/
https://www.st.com/en/embedded-software/fp-sns-datalog2.html
https://www.st.com/en/embedded-software/fp-sns-datalog2.html
https://www.st.com/en/development-tools/stellarstudioai.html
https://www.st.com/en/development-tools/stellarstudioai.html
https://stm32ai.st.com/ai-for-linux/
https://www.st.com/content/st_com/en/campaigns/st-gesture-and-hand-posture-recognition-imag-mcghpr.html#:~:text=Train%20your%20AI%20to%20create%20unlimited%20hand%20postures&text=Our%20Hand%20Posture%20ToF%20AI,Explore%20new%20possibilities%20today!
https://www.st.com/content/st_com/en/campaigns/st-gesture-and-hand-posture-recognition-imag-mcghpr.html#:~:text=Train%20your%20AI%20to%20create%20unlimited%20hand%20postures&text=Our%20Hand%20Posture%20ToF%20AI,Explore%20new%20possibilities%20today!
https://www.st.com/content/st_com/en/campaigns/st-gesture-and-hand-posture-recognition-imag-mcghpr.html#:~:text=Train%20your%20AI%20to%20create%20unlimited%20hand%20postures&text=Our%20Hand%20Posture%20ToF%20AI,Explore%20new%20possibilities%20today!
https://www.st.com/content/st_com/en/campaigns/st-gesture-and-hand-posture-recognition-imag-mcghpr.html#:~:text=Train%20your%20AI%20to%20create%20unlimited%20hand%20postures&text=Our%20Hand%20Posture%20ToF%20AI,Explore%20new%20possibilities%20today!
https://www.st.com/content/st_com/en/campaigns/st-gesture-and-hand-posture-recognition-imag-mcghpr.html#:~:text=Train%20your%20AI%20to%20create%20unlimited%20hand%20postures&text=Our%20Hand%20Posture%20ToF%20AI,Explore%20new%20possibilities%20today!
https://www.st.com/content/st_com/en/campaigns/st-gesture-and-hand-posture-recognition-imag-mcghpr.html#:~:text=Train%20your%20AI%20to%20create%20unlimited%20hand%20postures&text=Our%20Hand%20Posture%20ToF%20AI,Explore%20new%20possibilities%20today!
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8.1.3	 NXP

NXP Semiconductors offers a broad Edge AI portfolio spanning high-performance application processors, effi-

cient crossover processors, and even microcontrollers, all supported by a unified machine learning software envi-

ronment. These solutions are designed to enable AI at the edge with low latency, privacy and energy efficiency[41].

Table 8.4 details NXP’s newest processors, development boards, AI accelerators, and software tools for Edge AI 

– highlighting key specs, target applications, and innovations, along with how they support model deployment, 

optimisation and real-time inferencing at the edge.

Table 8.4: NXP Edge AI technologies

TECHNOLOGY DESCRIPTION KEY FEATURES WEBSITE

i.MX 95 
Applications 
Processor

High-performance 
Edge AI processor with 
integrated NPU, GPU, 
and safety features.

	� 6x Cortex-A55 (2 GHz) for  
application processing.

	� Arm Mali GPU for advanced 2D/3D graphics.

	� 2 TOPS eIQ Neutron NPU for AI inferencing.

	� Dual ISP supporting up to 12MP sensors.

	� ASIL-B/SIL-2 Safety Certification.

	� EdgeLock Secure Enclave for  
hardware-based security.

	� Dual GbE TSN for industrial and automotive 
networking.

	� PCIe Gen3, USB 3.0.

https://www.nxp.com/docs/
en/fact-sheet/IMX95FS.pdf

i.MX 93 
Applications 
Processor

Efficient Edge AI 
processor with Arm 
Ethos-U65 microNPU 
for low-power AI appli-
cations.

	� Dual Cortex-A55 (1.7 GHz) for  
Linux-based AI applications.

	� Cortex-M33 for real-time tasks.

	� 0.5 TOPS Ethos-U65 microNPU for  
AI inferencing.

	� Energy Flex architecture for  
dynamic power control.

	� EdgeLock Secure Enclave for  
encrypted data storage and authentication.

	� Dual CAN-FD, GbE TSN.

	� Low power operation for  
battery-powered Edge AI.

https://www.nxp.
com/products/proces-
sors-and-microcontrollers/
arm-processors/i-mx-ap-
plications-proces-
sors/i-mx-9-proces-
sors/i-mx-93-applica-
tions-processor-fami-
ly-arm-cortex-a55-ml-acceler-
ation-power-efficient-mpu:i.
MX93

i.MX 8M Plus 
Applications 
Processor

AI-focused SoC with in-
tegrated NPU and dual 
ISP for vision and multi-
media applications.

	� Quad Cortex-A53 (1.8 GHz), Cortex-M7  
for real-time control.

	� 2.3 TOPS NPU for AI workloads.

	� Dual ISP supporting 1080p60 video input.

	� Hardware video encoding (H.265/H.264).

	� DSP for audio processing and voice recognition.

	� LPDDR4 RAM support.

	� Industrial-grade temperature range  
(–40°C to 105°C).

https://www.nxp.com/
products/

MCX N  
Series Micro- 
controllers

First NXP-designed 
MCU with integrated 
NPU for TinyML applica-
tions.

	� Dual Cortex-M33 at 150 MHz.

	� eIQ Neutron NPU (30× AI acceleration vs 
CPU-only).

	� Integrated DSP for audio/signal processing.

	� EdgeLock Secure Enclave.

	� Ultra-low power consumption (<45 µA/MHz). Ex-
tensive analogue and digital peripherals for IoT.

https://www.nxp.
com/products/proces-
sors-and-microcontrollers/
arm-microcontrollers/gen-
eral-purpose-mcus/mcx-arm-
cortex-m/mcx-n-series-mi-
crocontrollers:MCX-N-SERIES

41   https://www.nxp.com/company/about-nxp/newsroom/NB-NXP-EXPANDS-EDGE-AI-CAPABILITIES-EIQ#:~:text=Deploying%20AI%20at%20
the%20edge,wider%20range%20of%20edge%20processors

https://www.nxp.com/docs/en/fact-sheet/IMX95FS.pdf
https://www.nxp.com/docs/en/fact-sheet/IMX95FS.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-93-applications-processor-family-arm-cortex-a55-ml-acceleration-power-efficient-mpu:i.MX93
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-93-applications-processor-family-arm-cortex-a55-ml-acceleration-power-efficient-mpu:i.MX93
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-93-applications-processor-family-arm-cortex-a55-ml-acceleration-power-efficient-mpu:i.MX93
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-93-applications-processor-family-arm-cortex-a55-ml-acceleration-power-efficient-mpu:i.MX93
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-93-applications-processor-family-arm-cortex-a55-ml-acceleration-power-efficient-mpu:i.MX93
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-93-applications-processor-family-arm-cortex-a55-ml-acceleration-power-efficient-mpu:i.MX93
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-93-applications-processor-family-arm-cortex-a55-ml-acceleration-power-efficient-mpu:i.MX93
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-93-applications-processor-family-arm-cortex-a55-ml-acceleration-power-efficient-mpu:i.MX93
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https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m/mcx-n-series-microcontrollers:MCX-N-SERIES
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https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m/mcx-n-series-microcontrollers:MCX-N-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m/mcx-n-series-microcontrollers:MCX-N-SERIES
https://www.nxp.com/company/about-nxp/newsroom/NB-NXP-EXPANDS-EDGE-AI-CAPABILITIES-EIQ#:~:text=Deplo
https://www.nxp.com/company/about-nxp/newsroom/NB-NXP-EXPANDS-EDGE-AI-CAPABILITIES-EIQ#:~:text=Deplo
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TECHNOLOGY DESCRIPTION KEY FEATURES WEBSITE

i.MX 95 
Evaluation 
Board

Early-access hardware 
platform for testing 
i.MX 95 features and AI 
acceleration.

	� SoM with i.MX 95.

	� Dual camera input.

	� Multiple display interfaces.

	� PCIe Gen3, USB 3.0.

	� Ethernet, Audio, GPIO expansion.

	� AI and vision demos included.

https://www.toradex.
com/computer-on-mod-
ules/verdin-arm-family/
nxp-imx95-evaluation-kit?utm_
term=&utm_campaign=PMax-
:+Toradex_EU_Smart_Shop-
ping_Ads_20240205(UK)&utm_
source=adwords&utm_
medium=ppc&h-
sa_acc=5623819148&h-
sa_cam=20985550698&h-
sa_grp=&hsa_ad=&hsa_src=x-
&hsa_tgt=&hsa_kw=&h-
sa_mt=&hsa_net=adwords&h-
sa_ver=3&gad_source=1&gad_
campaignid=21184289667&g-
braid=0AAAAAD_Ks1XrlAk-
B_1VmI49AueKd78HYw&g-
clid=EAIaIQobChMIuPLE-IS6jg-
MVDJJQBh1DODeCEAAYASA-
AEgItO_D_BwE

i.MX 93 
Evaluation Kit

Compact three-board 
setup to develop 
AI-powered applica-
tions with i.MX 93.

	� Compute module with i.MX 93 SoC.

	� Expansion boards for vision/audio interfaces.

	� Supports AI inferencing on Ethos-U65 NPU.

	� Pre-loaded machine-learning demos.

	� Low power AI development-ready.

https://www.nxp.com/de-
sign/design-center/develop-
ment-boards-and-designs/i.
MX93EVK

MCX N9xx-EVK Evaluation board for 
MCX N series MCUs 
with built-in TinyML 
support.

	� Onboard sensors (accelerometer, microphone).

	� AI-optimised power management.

	� Pre-configured with eIQ ML demos.

	� Secure boot and encryption support.

https://www.nxp.com/
design/design-center/devel-
opment-boards-and-designs/
MCX-N9XX-EVK

eIQ Machine 
Learning Toolkit

Comprehensive 
software suite for AI 
model optimisation and 
deployment on NXP 
hardware.

	� Supports TensorFlow Lite, Arm NN, Glow 
Compiler, DeepViewRT.

	� Model Zoo with pre-trained models.

	� Optimisation tools for NXP NPUs and MCUs.

	� Secure AI model execution with EdgeLock.

https://www.nxp.com/
design/design-center/
software/eiq-ai-devel-
opment-environment/
eiq-toolkit-for-end-to-end-
model-development-and-de-
ployment:EIQ-TOOLKIT

eIQ Time 
Series Studio

Automated ML work-
flow tool for time-se-
ries sensor data, 
targeting MCU-class 
devices.

	� No-code AI model training for industrial sensors 
and predictive maintenance.

	� AutoML tools for anomaly detection.

	� Low power AI model optimisation.

https://www.nxp.com/
company/about-nxp/smarter-
world-blog/BL-INTRODUC-
ING-THE-EIQ-TIME-SERIES-
STUDIO

eIQ GenAI Flow Development tool for 
deploying small gener-
ative AI models on NXP 
edge processors.

	� Supports domain-specific LLMs.

	� Local natural language processing.

	� Retrieval-Augmented Training (RAG) for edge 
inference.

	� Optimised for i.MX 8/9 processors.

https://www.nxp.com/de-
sign/design-center/software/
eiq-ai-development-environ-
ment:EIQ

EdgeReady 
Solutions

Turnkey AI hardware 
and software for facial 
recognition and voice 
control at the edge.

	� i.MX RT106F MCU for AI facial recognition with 
liveness detection.

	� i.MX RT106V for offline voice command 
processing.

	� Low-latency, privacy-focused AI inferencing.

https://www.nxp.com/
applications/technologies/
edge-computing/edg-
eready:EDGEREADY

Kinara 
Acquisition by 
NXP

Kinara is a leading edge 
AI accelerator special-
ising in accelerating 
LLMs and multimodal AI 
applications.

	� Up to 40 TOPS performance on the ARA-2 
accelerator.

	� Support for transformers with up to 30B 
parameters in INT4 precision.

	� Design and customer wins in growing Edge AI 
markets like retail and AI PCs.

https://www.eetimes.com/
nxp-acquires-ai-chip-startup-
kinara/
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Through these innovations, NXP empowers developers to create intelligent, safe, secure, certified and efficient 

edge applications.

8.1.4	 INFINEON TECHNOLOGIES AG

Infineon is a leading global semiconductor manufacturer specialising in power systems and IoT solutions. Table 

8.5 provides a summary of Infineon’s key Edge AI technologies.

Table 8.5: Infineon’s key Edge AI technologies

TECHNOLOGY DESCRIPTION KEY FEATURES WEBSITE

DEEPCRAFT™ 
Edge AI Solutions

A comprehensive soft-
ware platform enabling 
rapid implementation 
of AI and ML func-
tionalities in IoT edge 
devices.

	� DEEPCRAFT™ Studio: Development 
environment for creating or optimising AI 
models.

	� DEEPCRAFT™ Ready Models: Pre-trained, 
production-ready AI models optimised for 
Infineon‘s sensors and microcontrollers.

https://www.infineon.com/
design-resources/embedded-
software/deepcraft-edge-ai-
solutions

PSoC™ Edge 
Microcontroller 
Family

A new generation 
of microcontrollers 
optimised for machine 
learning-based applica-
tions, offering scalable 
performance, features, 
and memory options.

	� The PSOC™ Edge Family of Arm® Cortex®-M 
microcontrollers feature high-performance, 
low power, secured MCUs with hardware-
assisted ML acceleration for next generation 
applications.

	� They support an extensive set of peripheral 
sets, on-chip memories, timers, robust 
hardware security features and comprehensive 
connectivity options, built for a variety of 
consumer and industrial applications where 
device-based intelligent intuitive interaction 
is rapidly evolving. This includes appliances, 
speakers, wearables, robotics, and other 
smart home devices, some of which are also 
connected IoT products.

https://www.infineon.com/
promo/next-generation-
mcu?redirId=269245#family-
overview

ModusToolbox™ 
Software

ModusToolbox™ 
software is a modern, 
extensible develop-
ment environment sup-
porting a wide range of 
Infineon microcontrol-
ler devices. 

	� ModusToolbox™ provides a flexible set of 
tools and a diverse, high-quality collection 
of application-focused software. These 
include configuration tools, low-level drivers, 
libraries, AI development tools and operating 
system support, most of which are compatible 
with Linux, macOS, and Windows-hosted 
environments.

https://www.infineon.com/ 
design-resources/
development-tools/sdk/
modustoolbox-software

AURIX™ TC4x 
Family

Infineon’s AURIX™ TC4x 
family of microcon-
trollers focuses on 
real-time safe and 
secure processing for 
edge applications.

	� They are designed for next-generation 
eMobility, ADAS, automotive E/E architectures 
and affordable AI applications.

	� AURIX™ Accelerator Suite:

	� Parallel Processing Unit (PPU) enabling AI up 
to ASIL-D.

	� Data Routing Engine (DRE), for efficient 
communication and data handling.

	� cDSP: Programmable digital signal processing 
for the ADC signals.

	� Signal Processing Unit (SPU): radar accelerator.

	� Security Accelerators (CSRM/CSS): Hardware 
Crypto Acceleration.

https://www.infineon.com/
products/microcontrol-
ler/32-bit-tricore/aurix-tc4x

These technologies empower developers to create efficient, intelligent edge devices tailored to a wide range of 

applications.
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9	 Goals, Objectives and Recommendations  
for Action

While the early focus in GenAI was on extremely large language models (100s to 1,000 billion parameters) that 

demanded substantial computing power, high-speed connectivity, wide bandwidth and huge training datasets, 

the field is now evolving toward more efficient and accessible approaches that can deliver strong performance on 

narrower use cases and with fewer resources. Today, major tech companies offer lightweight AI models designed 

to operate efficiently at the edge, even on low power devices with limited resources, unreliable connectivity, and 

stringent real-time or safety-critical requirements (such as for automotive applications). However, addressing 

device constraints and limitations demands innovative approaches and a paradigm shift in both hardware and 

software development for Edge AI.

The Edge AI Working Group has formulated the following actions.

	� Achieving strategic autonomy for European business and manufacturing industry involves reducing 

dependency on external entities by fostering self-reliance in critical sectors such as technology, defence 

and energy. This approach enhances the EU’s capacity to act independently, uphold democratic values, 

and strengthen its position as a global actor.

	� Communicating a clear vision to the European Commission and relevant stakeholders is essential for 

aligning efforts toward common goals. A well-defined European strategy facilitates open collaboration, 

ensures policy coherence and mobilises resources effectively, thereby advancing initiatives that promote 

innovation, competitiveness and sustainability within the EU.

	� Identifying use cases from industry, especially SMEs, is crucial for tailoring technological solutions 

to real-world challenges. By understanding the specific needs of SMEs, policies can be designed to 

support their integration of AI and other advanced technologies, fostering growth, competitiveness and 

democratisation of AI.

	� Identifying key enabling technologies and building blocks over a five-to-10 year period with a 

reasonable market size involves forecasting technological trends and market demands. This foresight 

enables the EU to invest strategically in areas such as Edge AI, ensuring that emerging technologies align 

with European values and have the potential for significant economic impact.

	� Identifying dependencies and risks is vital for ensuring technological autonomy. By assessing reliance 

on non-EU technologies and resources, the EU can develop strategies to mitigate risks, diversify supply 

chains and strengthen internal capabilities, thereby enhancing resilience against external shocks.

	� Identifying opportunities for collaboration between industry and research fosters innovation and 

accelerates technological development. Partnerships between businesses and research institutions 

facilitate knowledge transfer, support the commercialisation of research outcomes, and enhance the EU’s 

competitive edge in global markets.

	� Identifying cross-domain synergies, technology transformations, ecosystem and tool design involves 

recognising overlaps between different sectors and technologies. Leveraging these synergies can lead 

to more efficient development processes, cost reductions, and the creation of versatile tools that serve 

multiple applications, thereby maximising the impact of technological advancements.

	� Helping companies make decisions about investments in technology development and strategic 

collaborations requires providing them with insights into market trends, technological advancements 

and potential partnerships. This guidance enables businesses to allocate resources effectively, innovate, 

and remain competitive in a rapidly evolving technological landscape.
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	� Exploiting enabler technologies such as RISC-V and Green ICT involves adopting open-source hardware 

architectures and sustainable information and communication technologies. These technologies promote 

innovation, reduce costs and align with environmental goals, contributing to the EU’s digital sovereignty 

and sustainability objectives.

	� Making Edge AI a strategic asset for the Chips JU entails integrating AI capabilities directly into 

hardware components. This approach enhances processing efficiency, reduces latency, and supports the 

development of advanced applications and programming frameworks, thereby strengthening the EU’s 

position in the semiconductor industry.

	� Building European on-premises and at the edge AI computational capacities, including being able to run 

AI learning and inference workloads both on-premises and at the deep edge, is crucial. These should 

have a strong focus on deployment tools and low power chips alongside an unprecedented energy-

efficiency envelope. Developing skills is foundational for supporting advanced technological research 

and innovation. Investments in on-premises highly energy-efficient computing infrastructure and 

educational programmes ensure that the EU has the necessary resources and talent to lead in fields such 

as AI and big data analytics.

	� Encouraging education and training about AI usage and development involves creating teaching 

programmes that equip individuals with the skills to utilise and build AI technologies responsibly. This 

focus on applied AI ensures that the next generation workforce can meet the demands of the European 

digital economy and contribute to ethical AI development[42].

	� Reducing the brain drain requires creating an environment that retains and attracts talent within the EU 

by federating the nations to act as a unified human resource organisation. This can be achieved by offering 

shared values, competitive opportunities, fostering innovation ecosystems, and providing support for 

research and entrepreneurship, thereby preventing the loss of skilled professionals to other regions.

	� Supporting and simplifying the creation of startups in the Edge AI domain involves reducing bureaucratic 

hurdles, providing access to funding, and offering mentorship programmes. These measures encourage 

entrepreneurship, stimulate economic growth, and drive technological innovation within the EU. 

Facilitating the relocation of high-potential talent across the EU is essential for fostering innovation and 

sustaining knowledge growth. By enabling mobility, the EU will enhance knowledge retention and ensure 

a return on national investments in the education of students and young professionals. To better assess 

the impact of these efforts, data should be incorporated on the annual number of STEM graduates in 

the EU – an indicator of the region’s potential intellectual capital generated through public educational 

investments.

Focusing efforts on areas not yet dominated by the US or Asia allows the EU to carve out niches in emerging 

technologies. By identifying and investing in underexplored sectors, the EU can establish leadership positions, 

diversify its technological portfolio, and reduce dependency on external technologies. There should be a unified 

and collaborative EU effort to achieve human brain energy-efficient chips (eg, 50 Peta Operations/W) focused 

on energy-efficient scalable on-premises and Edge AI computing. This would help bring about decarbonisation, 

CO2 reduction, and water and energy savings, and avoid AI computing centres being supplied by nuclear reactors 

as happens in US for high performance and cloud GenAI computing. It should also be a strategic priority on tech-

niques such as data cleaning, compression and augmentation, along with model optimisation methods including 

knowledge distillation, pruning and deep heterogenous quantisation.

42    According to talentneuron, there will be a global shortage of over 85 million STEMs by 2030, with a potential loss of USD8.5 trillion in GDP 
(see https://www.talentneuron.com/blog/solutions-for-bridging-the-growing-stem-skills-gap). This means it is imperative that the EU develop 
the next generation of STEM professionals.

https://www.talentneuron.com/blog/solutions-for-bridging-the-growing-stem-skills-gap
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Collectively, these strategies aim to bolster the EU’s technological sovereignty, foster innovation, and ensure 

that European businesses and industries remain competitive on the global stage.

Implementing the following measures will help to achieve these goals. However, addressing the outlined objec-

tives necessitates a comprehensive approach to advancing Edge AI within the EU.

	� Aligning strategy with global trends and EU initiatives: To maintain competitiveness in Edge AI, it is crucial 

to synchronise strategies with global developments and EU initiatives. The EU has launched significant 

programmes, such as like the EU AI Champions Initiative and InvestAI, collectively mobilizing around €200 

billion to accelerate AI innovation across the continent. Aligning with these initiatives ensures that efforts 

are cohesive, leveraging shared resources and knowledge to foster technological advancement.

	� Assessing the Current EU and Global State of the Art in Edge AI: A thorough assessment of the existing 

landscape in Edge AI within the EU and globally is essential. This involves evaluating recent advancements, 

ongoing research, and emerging applications to identify strengths and areas needing improvement. 

For instance, the EU-funded dAIEDGE project unites leading research centers and industrial partners 

to develop new paradigms for distributed AI solutions, positioning Europe at the forefront of Edge AI 

innovation. 

	� Reducing the Complexity of Edge AI Systems: Simplifying Edge AI systems is vital for broader adoption 

and efficiency. Techniques such as data cleaning, compression, and augmentation, along with model 

optimization methods like pruning and quantization, can make AI models more suitable for deployment 

on resource-constrained edge devices. Additionally, system optimization strategies, including framework 

support and hardware acceleration, contribute to more efficient Edge AI workflows. 

	� Organizing Application and Domain Consultations: Engaging with diverse stakeholders through 

consultations is crucial for gathering insights and fostering collaboration. Initiatives like the EU’s Internet 

of Things policy demonstrate the importance of cross-sector collaboration to boost industrial cooperation 

through open platforms and standards, thereby achieving European leadership across the entire edge 

ecosystem[43].

	� Setting Priorities, Topics, and Benchmarks for Future Chips Act JU Calls: Establishing clear priorities 

and benchmarks is essential for guiding future research and funding. The European Chips Act, which came 

into force in September 2023, aims to double Europe’s global semiconductor market share to 20% by 2030, 

providing €43 billion in public and private investment for chip research and development. Aligning future 

Joint Undertaking (JU) calls with this act ensures that resources are directed toward impactful areas in 

Edge AI.

	� Increasing Technology Readiness Level and Promoting Market Readiness: Advancing the Technology 

Readiness Level (TRL) of Edge AI technologies involves moving innovations from the lab to real-world 

applications. The EU’s investment of €180 million in breakthrough digital technologies, including AI, 

robotics, and new materials, underscores the commitment to bridging the gap between research and 

market deployment. Focusing on customer-centric research and development ensures that technologies 

meet market needs and are poised for successful adoption.

By addressing these facets, the EU can foster a robust Edge AI ecosystem that is innovative, competitive, and 

aligned with both regional and global technological advancements. The following objectives will provide guid-

ance for overcoming the highlighted barrios and for maintaining and expanding the position of the European 

players.  

43  https://digital-skills-jobs.europa.eu/en/actions/european-initiatives/europes-internet-things-policy

https://digital-skills-jobs.europa.eu/en/actions/european-initiatives/europes-internet-things-policy
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9.1	 Objective 1: Create European ecosystem and enforce synergies  

between existing ecosystems for fast adoption of Edge AI solutions 

The role of edge AI in the computing continuum is growing. The adoption of this technologies especially in safe-

ty-critical systems depends not only on resource efficient tiny ML approaches and models but also on the inno-

vation in engineering and chip design processes including simulation and testing. The main technological mile-

stones and R&I actions should address: 

Advancements in Edge Artificial Intelligence (AI) necessitate a comprehensive understanding of various techno-

logical aspects to develop efficient, reliable, and user-centric systems. Here’s an elaboration on the key areas:

	� Migration of the Processing to the Edge: Shifting computational tasks from centralised cloud servers 

to edge devices offers benefits like reduced latency and enhanced privacy. Techniques such as advanced 

memory management and in-memory computing accelerators are pivotal in this transition. In-memory 

computing reduces the energy consumption associated with data transfer between memory and 

processing units by performing computations directly within the memory hardware. This approach is 

particularly effective in low-power AI edge devices, addressing the memory-wall bottleneck inherent in 

traditional architectures. 

	� Foundational Models, Data, and Learning Technologies: Distributed Edge AI involves deploying AI 

models across multiple edge devices, enabling localised data processing and decision-making. This 

paradigm relies on foundational models tailored for edge environments, efficient data management 

strategies, and learning technologies that support decentralised training and inference. By distributing AI 

workloads, systems can achieve scalability and resilience, essential for applications such as autonomous 

vehicles and smart cities.

	� AI chips supporting multiple computing paradigms and multi-technology AI: The development of 

AI chips capable of supporting various computing paradigms – such as classical computing, analogue, 

neuromorphic computing, and deep learning – is essential for versatile AI applications. For instance, 

BrainChip’s Akida neural processor integrates event-based processing, mimicking neurological functions 

to enhance efficiency in Edge AI applications. Similarly, AMD’s Instinct MI300 series combines traditional 

and AI-optimised cores to accelerate diverse workloads. The emerging novel spintronic hardware for Edge 

AI could also be a breakthrough in overcoming the current limitations of existing hardware architectures.

	� AI verification and certification: Ensuring the reliability and safety of AI systems is critical, especially 

in sectors such as healthcare and autonomous driving. Verification and validation (V&V) processes 

systematically assess AI models to identify potential errors or biases, validating their performance against 

predefined criteria. Techniques include testing against representative datasets, conducting simulations, 

and analysing decision-making processes to ensure AI systems operate within acceptable bounds.

	� AI explainability, interpretability, verification and certification for building trust in AI systems: 

Establishing trust in AI systems is essential for their widespread adoption and responsible deployment. 

This begins with explainability and interpretability, which aim to make AI decision-making processes 

understandable and transparent to humans – an increasingly important requirement for both user 

acceptance and regulatory compliance (eg, the AI Act). Equally important are verification and certification 

processes, which ensure that AI systems adhere to standards of safety, fairness and reliability. These 

practices help validate that AI behaves as intended, particularly in high-stakes applications. Trustworthy 

AI also encompasses model security, including the authentication of deployed models, monitoring their 

evolution over time, and verifying the quality and integrity of the data used during training. Together, 

these elements form the foundation for deploying AI systems that are not only powerful but also 

accountable and secure.
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	� Interoperability, scalability and modularity: Designing AI systems with these features ensures seamless 

integration across diverse platforms, as well as the ability to adapt to growing demands.

	� On-device training is the learning mechanism that powers Self-X functionalities: Such training should 

include self-learning and self-adaptation, self-configuration, self-healing, and self-optimisation to enable 

AI systems to become robust, autonomous, context-aware and adaptive, all without cloud dependence, 

thus enhancing resilience and efficiency.

	� Engineering tools for designing, training, optimising, deploying, updating, and robustness against 

cyber-attacks and maintaining Edge AI: Specialised engineering tools facilitate the lifecycle management 

of Edge AI applications. These tools assist in designing, training, updating and maintaining AI models, 

ensuring they remain effective and secure over time. For example, AI-powered verification tools enhance 

the efficiency of SoC design verification, reducing manual effort and improving accuracy.

	� Support for the entire lifecycle from requirement specification to end-of-life: Comprehensive support 

throughout the AI system lifecycle – from requirement specification, design, development, deployment, 

operation, maintenance, evolution, to end-of-life – is vital for sustainability and compliance. This holistic 

approach ensures that AI systems are developed responsibly, maintained effectively and decommissioned 

safely, aligning with ethical and regulatory standards.

	� Human interaction with AI: Optimising human–AI interaction focuses on creating natural interfaces and 

interactions, and ensuring AI systems understand and respond to human inputs effectively. This involves 

natural language processing, adaptive learning, and user-centric design principles to enhance user 

experience and trust in AI applications.

	� Intent-driven optimisation, machine-to-machine interaction, interaction with digital twins: Intent-

driven optimisation allows AI systems to anticipate and act upon user intentions, improving efficiency and 

personalisation. Machine-to-machine (M2M) interactions enable devices to communicate and collaborate 

without human intervention, essential for the IoT. Interaction with digital twins (metaverse and virtual 

worlds) – virtual replicas of physical systems – facilitates real-time monitoring, simulation and optimisation, 

enhancing decision-making and operational efficiency.

Understanding and integrating these aspects are crucial for advancing Edge AI technologies, leading to more 

efficient, reliable and user-friendly applications across various industries. Education and professional training 

should supplement the outlined R&I actions for skill and capacity building in Europe.

9.2	 Objective 2: Foster collaboration along the AI value chain in  

Europe, from chip vendors to system integrators, along with  

collaboration across EU stakeholders in the ECS value chain, 

from chip designers to integrators to manufacturers

NVIDIA is currently the major market player with a growing ecosystem of hardware and software application pro-

viders in quickly evolving domains (such as robotics). It saves integration costs by providing complete solutions 

to consumers, while its easy-to-use software development kits (SDKs) for management, integration and deploy-

ment effectively create a vendor-lock and stronger customer retention. NVIDIA is in charge of the updates of the 

APIs, and maintains the value chain under its control.
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Figure 9.1: Cloud-edge-IoT market structures and ecosystems  

(Source: https://op.europa.eu/en/publication-detail/-/publication/ff35c457-8f3b-11ee-8aa6-01aa75ed71a1/language-en)

The European Edge AI ecosystem is currently fragmented and lacks a dominant player. STMicroelectronics coop-

erates with NVIDIA, and provides APIs and tools for integration with NVIDIA management and deployment SDKs 

and hardware solutions. In addition, Infineon expanded its safe automated driving collaboration with the NVIDIA 

DRIVE™ Pegasus AI car computing platform in 2018.

European players are currently within the circle of suppliers for NVIDIA’s solutions, making NVIDIA the fast-

est-growing and most valuable chip vendor company in the market. The latest Blackwell chip cost USD10 billion 

in R&D, according to public interviews by NVIDIA’s CEO. No hardware industry in Europe can achieve such invest-

ment for a single chip, nor could one imagine EU taxpayer funds being used to achieve this level of investment. 

Therefore, on-premises and energy-efficient edge computing is the most effective EU alternative for investment. 

An embedded software, application and service ecosystem should be created to complement edge chips, as 

industries are already proving through a strong focus on SMEs to help them transition toward AI endorsement.

To challenge NVIDIA’s dominance in the Edge AI sector, establishing an open ecosystem akin to Kubernetes[44] 

in cloud computing is essential. This ecosystem should encompass modular edge platforms and infrastructures, fa-

cilitating the integration of diverse European hardware and software solutions, thereby mitigating vendor lock-in.

Achieving seamless collaboration necessitates a unified vocabulary that bridges hardware and software do-

mains, fostering effective communication and knowledge sharing. Leveraging large language models can as-

sist in aligning disparate concepts and terminologies. Revisiting and updating existing reference architectures, 

such as RAMI 4.0[45], could further support this integration.

44  https://kubernetes.io

45   Reference Architectural Model for Industry 4.0 (RAMI4.0):  
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html

Source: DECISION Etudes & Conseil

https://op.europa.eu/en/publication-detail/-/publication/ff35c457-8f3b-11ee-8aa6-01aa75ed71a1/language-en
https://kubernetes.io
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html
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Such harmonisation would promote a balanced market landscape, enhancing the competitiveness of European 

enterprises. Virtualisation and simulation technologies are pivotal for ensuring seamless integration, trust and 

collaboration. Given the diverse stakeholders in the value chain, implementing certification mechanisms – such 

as automated and secure onboarding for systems of systems – and ensuring compliance with standards is cru-

cial, especially in safety-critical applications.

Collaborating with global players, SMEs and startups is also vital. Large corporations offer generic components 

that can be customised, while SMEs and startups, closely aligned with end-users, act as system integrators, tai-

loring solutions to specific needs. A modular and integrated approach would streamline the development of 

customised solutions. However, challenges such as GDPR compliance and stringent security requirements may 

impede collaboration with SMEs.

The European Chips Act should emphasise the co-design of software and hardware, exploring AI methodolo-

gies beyond GenAI, including tinyML, federated learning, and reinforcement learning. Initiatives could focus 

on enhancing interoperability across the value chain through a shared vocabulary, potentially by funding plat-

forms that support diverse approaches and modular architectures, revising frameworks such as RAMI4.0 or the 

Asset Administration Shell (AAS). Engaging open-source organisations, incubators and accelerators as part-

ners is essential for ecosystem development. Identifying and collaborating with early adopters of Edge AI tech-

nologies – such as startups, researchers and SMEs – will be crucial in the coming years to scale novel solutions. 

Notably, countries such as South Korea and Singapore are more receptive to new technologies compared to 

Europe’s conservative stance. European companies should strategise their market entry by considering global 

adoption dynamics.

To remain competitive globally, the technology stack must address both vertical and cross-domain aspects. 

Given the evolving requirements, a singular, generic technology stack is impractical. Instead, developing a flex-

ible, modular stack composed of interoperable building blocks is imperative. This approach requires ongoing 

standardisation and interoperability efforts across various domains. Throughout this development process, 

identifying gaps will highlight opportunities for startups and SMEs, fostering innovation and growth within 

the European Edge AI ecosystem.

9.3	 Objective 3: Create greater market impact along the AI value chain  

for Edge AI applications

The increasing demand for low-latency and energy-efficient solutions across diverse applications – such as 

autonomous driving, assistive systems and robotics – is creating new opportunities for Edge AI technologies. 

This trend is further reinforced by the increasing need for secure, AI-enabled manufacturing equipment, and 

the growing integration of AI into medical devices, enabling less invasive, more personalised treatments.

	� Delivering clear value through innovation: To foster impactful innovation across Europe, we must 

begin with a clear vision of the end product and its real-world value. Academic research, particularly 

within universities, should be more closely aligned with industry needs and user-driven priorities. 

Strengthening the flow of information between research institutions, industrial partners and end-users 

will ensure that technological advancements are relevant, scalable, and contribute meaningfully to 

societal progress.

	� Balancing cost and value: As semiconductor technologies advance, costs are rising – especially with the 

transition to 2nm and 3nm nodes, where transistor density increases significantly. The cost-reducing 

effects of Moore’s Law are diminishing, particularly in the AI domain. However, by focusing on the value 

created for end-users, we can justify the necessary investments in infrastructure, supply chains and 

advanced manufacturing processes.
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	� Aligning innovation with market need: Semiconductor innovation must be market-driven. Europe cannot 

rely solely on advanced manufacturing capabilities; a strong high-end market is also essential. Strategic 

collaboration – especially among leading European players such as Infineon, NXP and STMicroelectronics 

– is crucial to develop demand and share investment burdens effectively.

	� Strengthening policy, research and industry collaboration: Policymakers should shape funding and 

evaluation frameworks that prioritise long-term impact over short-term outputs. Researchers, in turn, 

should focus on application-oriented projects with clear pathways to market. Meanwhile, industry 

stakeholders must engage early in the research process to help guide innovation toward viable, high-

impact solutions.

	� Encouraging knowledge and IP sharing within Europe: Rigid intellectual property barriers can hinder 

early-stage innovation. A well-structured framework for shared innovation can amplify impact and 

reinforce Europe’s industrial foundation. Cross-layer collaboration – spanning AI, hardware, and embedded 

systems – should be prioritised to avoid vendor lock-in and ensure platform portability across applications.

	� Transferring research to meet market demands: Instead of measuring success by publication volume 

alone, we should emphasise innovations that have the potential to transform markets, address pressing 

societal challenges, and solidify Europe’s leadership in critical technologies. Achieving this requires a 

long-term, collaborative approach across sectors, with a focus on strategic alignment and real-world 

applicability.

	� Enabling strategic, pre-competitive cooperation: In sectors such as automotive, there are already 

tangible benefits from shared reference architectures for AI and semiconductors. For example, BMW is 

driving a collaborative ecosystem for software-defined vehicles with partners that include Bosch, Imec, 

Cadence, Synopsys, Siemens and Arm as part of the Automotive Chiplet Programme[46]. Standards and 

harmonisation will be key to building a competitive and open European technology landscape.

	� Fostering European and international collaboration: To meet the challenges posed by GenAI and 

emerging technologies, Europe must intensify its collaborative efforts across the ecosystem. Initiatives 

such as the Edge AI Foundation – despite their North American origins – offer valuable platforms for 

European participation, knowledge sharing, and alignment with customer needs in an open, value-driven 

manner.

	� Achieving strategic technological autonomy: Europe’s continued reliance on foreign sources for key 

technologies, including semiconductors and AI, poses risks to its economy, democracy and technological 

sovereignty. Addressing this dependency is an urgent strategic imperative. By investing in our capabilities 

and reinforcing cross-border collaboration, we can secure Europe’s leadership and autonomy in the global 

technology landscape.

Edge AI is at a pivotal moment. To unlock its full potential, Europe must accelerate innovation by improving devel-

opment tools, reducing fragmentation, and fostering cross-sector collaboration. Unlike cloud AI, which benefits 

from standardised platforms, Edge AI faces complexity and heterogeneity, requiring tailored design approaches 

for everything from ultra-low power devices to high-performance chips. GenAI is a transformative force and key 

driver of current market momentum. Acting swiftly to develop European foundation models and AI tools is essen-

tial. Strategic cooperation and shared standards – as seen in efforts such as the Automotive Chiplet Programme 

– are vital to advancing software-defined mobility and Edge AI. Embracing system-level thinking, encouraging IP 

sharing under proper frameworks, and fostering cross-layer optimisation will be critical for Europe’s leadership 

in next-generation AI.

46  https://www.imec-int.com/en/press/arm-ase-bmw-group-bosch-cadence-siemens-siliconauto-synopsys-tenstorrent-and-valeo-commit

https://www.imec-int.com/en/press/arm-ase-bmw-group-bosch-cadence-siemens-siliconauto-synopsys-tenstorrent-and-valeo-commit
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 ABBREVIATIONS

A

AAS – Asset Administration Shell

ADAS – Advanced driver-assistance system

ADC – Analogue-to-digital converter

AGI – Artificial General Intelligence

AI – Artificial Intelligence

AI4DI – Artificial Intelligence for Digitizing Industry

AIoT – Artificial intelligence of things

ANDANTE – AI for New Devices and  

Technologies at the Edge

ANN – Artificial neural network

API – Application programming interface

ASIC – Application-specific integrated circuit

ASRA – Advanced SoC Research for Automotive

AutoML – Automatic Machine Learning

B

BRICS – Brazil, Russia, India, China and South Africa

C

CAGR – Compound annual growth rate

CEA – Commissariat à l‘énergie atomique et aux 

énergies alternatives

CEO – Chief executive officer

CES – Consumer Electronics Show

Chips JU – Chips Joint Undertaking

CIM – Compute-in-memory

CLI – Command-line interface

CMOS – Complementary metal-oxide semiconductor

CNN – Convolutional Neural Network

CoAP – Constrained application protocol

CPU – Central processing unit

CRISPR – Clustered regularly interspaced short 

palindromic repeats

CSRM – Cybersecurity risk management

CSS – Cybersecurity satellite

D

DL – Deep Learning

DNN – Deep Neural Network

DRAM – Dynamic random-access memory

DRE – Data Routing Engine

E

E/E – Electrical/electronic

ECHO – Edge CHip to clOud

ECS – Electronic components and systems

ECU – Electronic control unit

EDA – Electronic design automation

ePCM – Embedded phase change memory

F

FDSOI – Fully depleted silicon on insulator

FPGA – Field programmable gate array

G

GAN – Generative Adversarial Network

GDPR – General Data Protection Regulation

GenAI – Generative AI

GPGPU – General-purpose graphics processing unit

GPU – Graphics processing unit

H

HPC – High-performance computing

I

I/O – Input/output

IC – Integrated circuit

ICT – Information and communications technology

IoT – Internet of Things

IP – Internet protocol

ISP – Image signal processor

ISPU – Intelligent sensor processing unit

J

JU – Joint undertaking

L

LLM – Large Language Model

M

M2M – Machine-to-machine

M2TJ – Multi-level magnetic tunnel junction

MAS – Multi-agent system

MCU – Microcontroller

MEMS – Micro-electro-mechanical systems

ML – Machine Learning

MQTT – Message queuing telemetry transport

MRAM – Magnetic random-access memory

N

NLP – Natural language processing

NoE – Network of Excellence

NPU – Neural processing unit
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O

OxRAM – Oxide-based resistive RAM

P

PCB – Printed circuit board

PCM – Phase-change memory

PCRAM – Phase-change RAM

PPU – Parallel Processing Unit

PUF – Physically unclonable function

PULP – Parallel Ultra-Low Power

R

R&I – Research and innovation

RAG – Retrieval-Augmented Training

RAM – Random-access memory

RAMI4.0 – Reference Architectural Model  

for Industry 4.0

ReRAM – Resistive RAM

RVV – RISC-V Vector Extension

S

SDK – Software development kit

SME – Small and medium-sized enterprise

SNN – Spiking Neural Network

SoC – System-on-a-chip

SOT – Spin-orbit torque

SPU – Signal Processing Unit

SRAM – Static random-access memory

ST – STMicroelectronics

STCO – System technology co-optimisation

STDP – Spike-Timing-Dependent Plasticity

STEM – Science, technology, engineering and 

mathematics

T

TinyML – Tiny Machine Learning

TOPS – Trillions of operations per second

TPU – Tensor processing unit

TRL – Technology readiness level

TSMC – Taiwan Semiconductor Manufacturing Co

V

V&V – Verification and validation

V2I – Vehicle-to-infrastructure

V2V – Vehicle-to-vehicle
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