Enabling the factories of the future:
The role of smart systems in manufacturing and robotics

Tracht, K., Kuhfuss, B., Brinksmeier, E., Busse, M., Kroll, L., Hogreve, S., Garbrecht, M., Lehmhus, D., Heinrich, M., Bosse, S.

Zurich, 21.03.2012
Roles of Smart Systems

... in Manufacturing & Robotics

- Factory automation
- Production planning

- Manufacturing technology
- Process control

- Condition monitoring
- Adaptivity
Evolution of Smart Systems

1st Generation

Integrated & Miniaturized
- Advanced functionality
- Compact design
- Intelligent tooling
- Fibre Bragg grating for fibre-reinforced plastic

2nd Generation

Predictive & Reactive
- Environment matching
- Energy harvesting
- Adaptive gripper
- Self-calibrating robot sensing

3rd Generation

Autonomous
- Autonomous systems
- Cognitive abilities
- (Autonomous robot)
- (Internet of things)

Source: according to EPoSS WG Manufacturing and Robotics
Structural Integration in Sensorial Materials

Degree of sensor integration in structural material

- Sensor equipped material
 - Structural weakening
 - Structural supporting
- Sensor integrated material
- Sensorial material
 - Microscopic heterogeneous
 - Microscopic homogeneous
Functional Integration in Sensorial Materials

- Functional material
 - Non electrical signal
 - Signal transducer
 - Analogue signal processing
 - A/D conversion
 - Digital signal processing

- Sensor element
 - Analogue signal
 - ASP
 - ADC
 - DSP

- Elemental sensor
 - Mechanical transd. element
 - Analogue signal
 - ASP
 - ADC
 - DSP

- Sensor
 - Mechanical transd. element
 - Analogue signal
 - ASP
 - ADC
 - DSP

- Intelligent sensor
 - Mechanical transd. element
 - Analogue signal
 - ASP
 - ADC
 - DSP

- Sensor system
 - Mechanical transd. element
 - Analogue signal
 - ASP
 - ADC
 - DSP

Internal functional range

External functional range
Realization of Sensorial Materials
Layer by Layer

- Structural material
- Optional insulating layer
- Functional layer with embedded sensors, produced e.g. via printing processes
- Interconnecting layer
- Peripheral component layer, e.g. energy storage, communication and data processing units
Sensorial Materials
Layer by Layer

- structural material
- optional insulating layer
- functional layer with embedded sensors, produced e.g. via printing processes
- interconnecting layer
- peripheral component layer, e.g. energy storage, communication and data processing units

Potential techniques for sensor application:
- Aerosol Jet® printing
- Inkjet printing
- roll-to-roll/mask-based processes for larger series

Contact:
Dr. Volker Zöllmer
HoD Funktionsstrukturen
volker.zoellmer@ifam.fraunhofer.de
Product Development & Production
Integration level vs. place in prod. Developm.

Research → Product Definition → Concept → Product & Process Development → Ramp-up → Production → Use

Sensor equipped material
Sensor integrated material
Sensorial material

Design engineers domain
Concept of a Polymer Based MEMS

Purely micro injection moulded MEMS
- Absolutely mass production
- Use of available established materials
- Low cost production
- One step process

Process of back injection of a PVDF-sensor film

μ-injection moulding tool

Battenfeld/Wittmann: Microsystem 50; μ-injection moulding machine
Sensors for Structural Health Monitoring

Bridging Smart Systems Roles

- Control of process while manufacturing of rotorblades
- Extension of service interval by detection of failure
- Early reaction in case of failures
- Detection of loads thereby optimal pitch setup possible
- Ice detection

„FiberCheck“

Stitched strain gauge on a semi finished glass fibre textile.
Smart Systems for Manufacturing

Where to get, where to use the data?

- **Workpiece**
 Smart/sensorial materials to monitor not only life cycle loads, but also the manufacturing process (online process monitoring, OPM). Exchange of data with machine tool control an option/aim.

- **Tool**
 Smart tooling to collect data „closer to the process“, to better understand the process itself, supply new/alternative/additional data, to provide information to process control, to increase accuracy by allowing compensation of tool-related deterioration.

- **Machine Tool & Robotics**
 Machine tool sensorization to detect/compensate system-related sources of inaccuracy, provide new /alternative/additional data to the machine control system, enabling among others predictive maintenance solutions.

- **Production Cell/Line/Site**
 Integrate sensor data over all levels to support production planning/control.
Smart Syst. for Manufacturing
Smart Tooling: Reaming Tool (I)

Adaptive reaming tool with integrated strain gauges and stepper motor based system for compensation of cutting edge wear to achieve increased accuracy and extended tool life.
Smart Syst. for Manufactur.

Smart Tooling: IntelliTool (I)

3rd/4th generation IntelliTool smart grinding wheel using wheel-integrated signal transmission via optical fibre, photodiode-based infrared temperature sensing and telemetric data transmission to external signal evaluation unit.

IWT Foundation Institute for Materials Science Bremen

wheel-integrated optical fibre, measuring site and photodiode

Enabling the factories of the future / 21.03.2012
Smart Systems for Manufacturing

Smart Tooling: 3D force sensitive Gripper (I)

- Grasping of pressure sensitive objects
- Grasping of objects with uncertain geometry
- Force adaptive path corrections
- Force measuring with strain gauges
- Weak areas to concentrate deformation
- Separation between x-, y- and z-direction forces
Smart Syst. for Manufact.

Sensor Networks

Machine learning and networks of active sensor nodes with decentralized data processing and advanced methods from Artificial Intelligence are used to sense both environmental and embodied information and aids structural health monitoring.
Smart Systems for Manufacturing

Sensor Network in Robotics

Integration of sensorial materials in robotics using active sensor networks embedded in a robot arm manipulator to provide perception of the environment (e.g. collision detection and interpretation).

Tight coupling and integration of sensors, actors, and data and information processing.

Multi-agent systems are used to implement distributed data processing and information derivation.
Smart Systems for Manufacturing

Smart Products | Smart Production

• Intelligent tools and processes
 Sensor integration, embedded systems, real-time data evaluation, improved process understanding and modeling to allow for immediate reaction to processing deviations, data evaluation and knowledge accumulation to allow derivation of reaction strategies, predictive maintenance etc.

• Guidance through production assistants
 Reduction of external control complexity by provision of multiple sensor/signal- and knowledge-based, simplified views on production status to operators.

• Intelligent production design process
 Use of sensorial materials as product models for physical simulation/evaluation of production designs in experimental machine setups.

• User-friendly human-machine-interfaces (HMI)
 New ways to communicate status information and justify decisions in part or fully autonomous production systems.
Smart Products for smart production

Production Navigation System

Production Information Systems
- Tolerances
- Production parameters
- Evaluation of scheduling alternatives

Production Assistance Systems
- Process control
- Fault compensation
- Process adjustment

Production Navigation System
- Avoidance of bottlenecks
- Route optimization
- Proposition of alternative routes

Information
- Sensor
- Human

Decision

Semantics
- Description of processes
Contact

ISIS Sensorial Materials Scientific Centre
University of Bremen

Prof. Dr.-Ing. Kirsten Tracht
Tel. +49 (421) 218-64840
Email tracht@bime.de

Dr.-Ing. Dirk Lehmhus
Tel. +49 (421) 5665-408
Email dirk.lehmhus@uni-bremen.de
Smart Systems for Manufacturing

Smart Tooling: Reaming Tool (II)

The correct and accurate function of the adjustment mechanism is proven

Adjustment has no influence on the quality of the bores
Sensing in Production

Smart Tooling: IntelliTool (II)

processes 1 and 2

related normal force F'_n

related tangential force F'_t

temperature T_{IR}

IR-sensor

processes 29 and 30

workpiece:
18 CrNiMo 7-6

dw = 99 - 95.4 mm

b = 12 mm

grinding wheel:
A 80 K 8 V 10

process:
Außenrund

$v_s = 30$ m/s

$n_w = 80$ min$^{-1}$

rough grinding:

$v_{fr} = 1.2$ mm/min

$a_{e.rg} = 0.09$ mm

fine grinding:

$v_{fr} = 0.8$ mm/min

$a_{e.fg} = 0.08$ mm

finish grinding:

$v_{fr} = 0.3$ mm/min

$a_{e.fhg} = 0.03$ mm

sparking out:

$t = 8$ s

coolant:

6.6 l/min

mineral oil

IWT Foundation Institute for Materials Science Bremen

dressed

after 30 grinding cycles
Sensing in Production
Smart Tooling: 3D force sensitive Gripper (II)

- Sufficient physical separation, interferences < 3 %
- Maximum measuring error 1.43 %
- Proof-of concept successful
- Design evolution towards embedded systems